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Preface 

This technical report explores planetary boundary-layer (BL) and surface-layer 
(SL) options for the Weather Research and Forecasting (WRF) model, which is the 
core of the Weather Running Estimate–Nowcast model (WRE-N), designed to 
provide forward-deployed locations’ weather and environmental data. This 
information is intended for integration into the common operational picture for 
decision making and planning purposes in forward-deployed locations. Previous 
work at the US Army Research Laboratory (ARL) involved the design of the system 
and looked at improvements to the verification process. Those results are published 
in the following ARL technical reports: Smith et al. (2015), Kirby et al. (2013), and 
Dumais et al. (2013).  

The experiments described in this technical report are a subset of those used by 
Smith and Penc (2015a, 2015b, 2016) and Smith et al. (2017, 2018) in the design 
of experiments (DoE) research that explores a more systematic novel approach to 
the selection of parameterization schemes for nowcasting with WRF. In this report 
we examine the BL schemes only because they have the potential for providing for 
the greatest impact in the model physics uncertainty using the WRF model. The 
uncertainty associated with the other physics options (radiation, cumulus, and 
microphysics schemes) are explored in greater detail in the previously mentioned 
DoE research. The selection and performance of the BL and SL physics packages 
are explored in this report. This work is part of a larger effort to quantify the 
uncertainty in numerical weather prediction models, namely the WRF. WRE-N 
takes coarser model data from the operational weather centers (e.g., US Air Force 
557th Weather Wing) and produces high-resolution local short-range forecasts to 
provide support for Army users, such as field deployed locations.  



 

Approved for public release; distribution is unlimited 
xi 

Acknowledgments 

Richard Penc offers his thanks to Dr Steven Silberberg of the Aviation Weather 
Center, National Oceanic and Atmospheric Administration (NOAA), for his 
valuable suggestions and editing of the manuscript for structure and scientific 
content at various stages since its inception to completion. Thanks are also due to 
Mr Pieter Haines, whose tireless work supporting the computing facilities, 
particularly the local modeling server clusters, is greatly appreciated by the US 
Army Research Laboratory (ARL) Atmospheric Modeling Branch at White Sands 
Missile Range. He also thanks Dr Theresa Foley for the many lengthy and 
thoughtful discussions pertaining to Geographic Information Systems, specifically 
the potential sources of errors due to geolocation and coordinate transformations 
related to use of the National Center for Atmospheric Research Model Evaluation 
Tools analysis packages with our databases. Thanks are due to Jeff Johnson of ARL 
for providing the Air Impacts Routing figure and for invaluable discussions on 
interfacing Weather Running Estimate–Nowcast mode to decision tools.  

AirDat LLC provided Tropospheric Airborne Meteorological Data Reporting 
observational data, which expanded the above-surface data available for data 
assimilation and verification. This study was made possible in part due to the data 
made available to NOAA by various providers for inclusion in the Meteorological 
Assimilation Data Ingest System (MADIS). The parallel Real-Time Mesoscale 
Analysis “use” and “reject” lists were provided by Steve Levine at the National 
Weather Service’s National Centers for Environmental Prediction’s Environmental 
Modeling Center and greatly facilitated making full use of the MADIS 
observational dataset. 

Many thanks go to the ARL Technical Publishing Office for their consistently high 
standard of editing, technical review, and making things look nice. 

 



 

Approved for public release; distribution is unlimited 
xii 

INTENTIONALLY LEFT BLANK. 



 

Approved for public release; distribution is unlimited 
xiii 

Executive Summary 

The US Army has a demonstrated need for up-to-date, high temporal- and spatial-
resolution meteorological data and short-term weather forecasts to support mission 
decision making and planning in field-deployed locations. As such, the Weather 
Running Estimate–Nowcast (WRE-N; Dumais et al. 2009) system was developed 
to address these needs. At the heart of WRE-N is the Weather Research and 
Forecast (WRF) model, which is a community open-source model developed 
primarily by the National Center for Atmospheric Research (Skamarock et al. 
2008). The WRF model is capable of producing global and regional scale forecasts, 
as well as longer-term decadal climate simulations. Spatially, the model physics are 
capable of resolving large-scale synoptic weather systems, mesoscale phenomena 
such as severe storms, and sub-kilometer-scale phenomena down to the larger 
boundary-layer (BL) eddies through inclusion of a large-eddy simulation model. In 
addition, the model includes a wide array of physics packages that can be selected 
by the user, parameterizing subgrid-scale processes including solar (or shortwave, 
SW) and longwave (LW) radiation, cumulus (CU) and shallow cumulus (SCU), 
cloud microphysics (MP), planetary BL (PBL), surface layer (SL), and integrated 
land surface model options. The WRF stands out among other operational weather 
forecast models in its flexibility of choice in physical parameterizations.  

As a community model, the WRF code and physics are not static. Aside from bug 
fixes and performance improvements, the modeling system is continually being 
updated with the latest physical parameterization schemes. The model is updated 
yearly, with a release 4 months later primarily to address bugs in the code. The 
current release of WRF (at time of this research) is 3.8, and the latest “bug-fixed” 
version is 3.8.1, released in August 2016. In the WRF v.3.8.1 release, there are  
12 PBL, 8 SL, 6 LW, 7 SW, 21 cloud MP, 11 CU, and 3 SCU options selectable by 
the user. Along with tunable model parameters (e.g., diffusion) there are almost 
limitless combinations of schemes and parameterization schemes to choose from. 
Analysis of model output generated using these schemes is the subject of Design of 
Experiment (DoE) studies ongoing at the US Army Research Laboratory’s 
Atmospheric Modeling Branch (Smith and Penc 2015a,b, 2016) and Smith et al. 
(2017, 2018).  

The present study focuses on the PBL/SL combinations because of the importance 
of simulating BL processes, which drive atmospheric motions near the surface 
where ground forces operate, where artillery meteorology impacts are great, and 
where land mobility is impacted. Of the 12 PBL schemes in WRF, 7 are examined 
for their overall performance in a complex terrain environment. The model domain 
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is in southern California, approximately centered near San Diego, California. It was 
chosen primarily because of the availability of high-density surface observations 
and diversity of terrain. A triple nest configuration (9–3–1 km) of WRF v3.8.1 was 
run for a single day in which conditions were quiescent in order to observe the 
evolution of the PBL in the absence of rapidly changing synoptic-scale weather 
influences. The present analysis is a subset of those used in the DoE study. 

This study examines the PBL/SL performance in complex terrain, driven by the 
need for the WRE-N modeling system to be preconfigured to run optimally in 
nonpredisclosed forward-deployed locations for the purpose of battlefield 
situational awareness. The Mellor-Yamada-Nakanishi-Niino, Mellor-Yamada-
Janjic, Yonsei University (YSU), Assymetric Convection Model 2, Bougeault-
Lacarrère (BouLac), Quasi-normal Scale Elimination (QNSE), and Shin-Hong 
PBL/SL options were compared, representing local, nonlocal, and hybrid schemes. 
Postprocessing was performed using the Model Evaluation Tools package, which 
was designed to evaluate WRF forecasts. We constructed a 7-member physics-
based ensemble for our analyses to examine the uncertainty due to PBL/SL physics. 
We calculated the root-mean-square error and bias for each of the schemes. Of the 
7 schemes we analyzed, no single scheme stands out as universally optimal for use 
for our model domain and initial conditions. The standard deviation within the 
model ensemble members was small. While the performance of these schemes does 
not differ significantly for the daytime convective BL, greater variation is 
encountered during nighttime. The model appears to have the largest difficulty in 
simulating the BLs during the transition between daytime and nighttime. 

Although the best performance is a function of meteorological variable (wind, 
temperature, and moisture) and time of day, overall the best performing schemes 
include the BouLac, YSU, and QNSE parameterizations. Analysis of our results 
from a single case day using Talagrand diagrams shows that there is insufficient 
spread in the members for the consideration of a PBL-scheme-only model 
ensemble. The near-surface meteorological parameters, PBL structure, and vertical 
profiles are important for our application and for the prediction of weather effects 
on Army operations using weather impacts decision aids. While the scale-aware 
scheme (Shin and Hong 2013) addresses the scale dependency problem, there was 
no notable significant improvement gained in using this scheme with the current  
1-km inner-domain grid spacing.  

 
 



 

Approved for public release; distribution is unlimited 
1 

1. Introduction 

The US Army Research Laboratory (ARL) has been performing long-term research 
into application of the Advanced Research version of the Weather Research and 
Forecast (WRF-ARW) model (Skamarock et al. 2008) for battlefield short-range 
forecasting in a field-deployed location. The purpose of these forecasts is to provide 
weather support for mission planning and execution and to augment coarser 
resolution models for specific applications required by field deployed units. 
Currently, the resolution of the operational weather modeling support provided by 
the operational centers is too coarse for the needs of the US Army.  

In addition, there is a need to assimilate locally collected data to improve model 
initialization and forecast accuracy for high-resolution nowcasts. Some previous 
studies using WRF-ARW for this same application (e.g., Dumais et al. 2013) have 
focused on using a 9-3-1-km nested grid configuration with WRF-ARW initialized 
using the National Center for Environmental Prediction North American Mesoscale 
model. Other studies (Reen et al. 2014a, 2014b) have used the Global Forecast 
System (GFS) model output for initialization, similar to what was used to initialize 
WRF-ARW for the Geographic Information System (GIS) studies to assist in the 
evaluation of WRF-ARW forecasts (Smith et al. 2016a, 2016b). The current study 
uses the GFS model for initialization.  

For the model to be useful for nowcasting, a model cycle must be completed in 
reasonable time with the limited computational resources (multicore laptop or 
desktop unit in a forward-deployed location). To accomplish this it may be 
advantageous to perform a majority of the preprocessing and coarse model 
computations at a fixed-base location rather than in the field, communicate that to 
the field to allow the high-resolution modeling to be run, and then potentially 
communicate the high-resolution forecast back to the operational center. Although 
it is not problematic to produce the boundary conditions for the finer grids at a 
forward-deployed location, data assimilation of large-scale, high-volume 
observations such as satellite observations would be easier to accomplish at an 
operational center due to the bandwidth and processing power available. The 
constraints in such a design are then limited to the ability to efficiently 
communicate the data through data links to the forward-deployed location.  

The forward-deployed model has the advantage that it can assimilate observations 
that were not yet made (or at least not yet available) when the most recent, coarser 
grid model was initialized (since the coarser grid model may only be run every  
6 h). Another potential advantage of forward-deployed modeling is the assimilation 
of local observations that may not be easily or in a timely manner pushed back up 
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to the operational center. Since some operational centers routinely produce 
forecasts using increasingly finer grids, including the US Air Force’s 557th 
Weather Wing, supplier of weather data for many US Army applications, it would 
then be necessary to only run the finest-scale grids in the forward-deployed 
environment to meet Army requirements. The goal then becomes assimilating any 
local initialization data and running 1 or perhaps 2 grids in a timely manner at the 
field location such that the forecasts are completed in a rapid update cycle mode.  

One weakness of this approach is the potentially limited bandwidth for transmission 
of fine-resolution model data at sufficiently high temporal resolution to provide 
adequate boundary conditions for the 1-km (and potentially smaller) domains. 
Running both nests locally can have Weather Research and Forecasting Model 
(WRF) providing continually updated initial conditions rather than temporally 
interpolating between 2 initial conditions. Also, this limits the boundary conditions 
of the 1-km domain to account for new observations only every 6 h (the time 
between cycles of the coarser domains). 

Although not a specific focus of this paper, the appropriate treatment of nest lateral 
boundary conditions will increasingly become a more important consideration for 
such minimal nesting Weather Running Estimate–Nowcast (WRE-N) solutions, so 
as to minimize known issues of limited-area mesoscale modeling like boundary 
sweeping (Warner et al. 1997). 

1.1 Research Objectives 

There are a number of goals we want to realize in this research. The ultimate goal 
is to deploy WRF in a forward location and produce timely and useful 0- to 3-h and 
perhaps 0- to 6-h forecasts (nowcasts) tailored to the individual end user. This is 
not a trivial task given the potentially limited communications and computational 
resources available in the field. Model initialization and boundary condition 
datasets can be large and need to be assimilated into the modeling system.  

Secondly, we need to increase the resolution so that user needs are met. 
Specifically, we require a grid spacing of roughly 1 km to resolve approximately  
5-km-scale atmospheric phenomena that are necessary to resolve the detailed flow 
field over complex terrain. For example, on a 300-m inner-nested grid we can 
resolve phenomena with a scale of approximately 1.5 km, and on a 200-m grid we 
can resolve to an approximately 1-km scale. To be practical, the extent of the inner 
grid must be limited to remain within the computational time constraints of the 
system being deployed in the field. The sub-kilometer-scale work is not covered in 
this report.  
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Thirdly, there is a need to provide a measure of forecast uncertainty. Since WRE-
N system operators are unlikely to have a meteorological background, the need to 
express forecast confidence is essential. There are a number of ways to achieve this. 
One is to use a time-lagged ensemble (Lu et al. 2007), which involves setting up 
and running the model in a rapid update cycle mode and compiling statistics and 
variances based on sequential model output. While this is relatively easy to achieve, 
there is a serious limitation in that earlier forecast cycles will not have previous 
forecasts to compare against in deriving the statistics. The magnitude of the 
perturbation in a time-lagged approach depends on the age of a forecast since 
forecast quality usually decreases with lead time; thus, ensemble spread in a time-
lagged system may not be as useful as if generated by initial conditions, stochastic, 
or physics-based methods. The time-lagged approach’s big advantage is in ease of 
production and computational efficiency.  

Another method to achieve the goal of developing a measure of uncertainty 
involves using physics-based ensembles (Stensrud et al. 2000). This method 
involves making several model runs with different physics packages selected and 
calculating model ensemble statistics from the model runs. The variety of model 
physical schemes incorporated into today’s mesoscale models is described in texts 
such as Stensrud (2007). In an optimal environment this would involve developing 
an ensemble of 20 or more members, just as the operational centers employ. A 
sampling of these is described by Eckel et al. (2010). Currently, this is not practical 
in a field-deployed environment, but we can employ a limited-member ensemble 
to obtain a rudimentary measure of the uncertainty due to the model physics. If we 
resort to a time-lagged ensemble, it is evident that we need to select the optimal 
combination of physics packages for that environment. Because we do not have 
advance notice where the system will be deployed, we cannot fine-tune the model 
physics in advance for a specific environment. The goal then becomes selecting a 
single configuration that works well in most, if not all possible environments. 
Adjustments to configuration are not practical with limited lead time before 
deployment and, in some cases, the previously unknown location(s) where the 
modeling system is actually deployed.  

The goal of this aspect of the research is to examine the performance of a number 
of physics packages to see which performs best in a complex terrain environment. 
We selected a southern California domain that has been widely used and 
documented at ARL (Dumais et al. 2009, 2013; Dyer et al. 2015, 2016; Foley et al. 
2015). The inner nests of this domain include coastal, transitional, mountainous, 
marine, urban, agricultural, forested, and desert environments. To focus on and 
examine the verification of surface and near-surface properties and focus on the 
diurnal variation of the convective boundary layer (BL) during weak synoptic 
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forcing, we examined a number of planetary BL (PBL) options using the latest 
version of WRF-ARW (v.3.8.1, when this research began).  

1.2 Common Model Configurations: Subgrid-Scale Physics 

Some of the common physics scheme configurations for WRF are listed in Table 1. 
Included are 3 configurations used at ARL, 2 used by the 557th Weather Wing, and 
1 configuration used by the National Severe Storms Lab (NSSL) for operational 
prediction of severe weather events over the continental United States. Some 
physics packages are preferred in the operational community. The NOAH (National 
Center for Environmental Prediction [NCEP], Oregon State, Air Force, Hydrology 
Laboratory) land surface model (LSM) has been almost universally accepted 
because of its performance and capabilities. Likewise, the combination of Dudhia 
and Rapid Radiative Transfer Model (RRTM) radiation schemes, Kain-Fritsch 
cumulus parameterization scheme, and WRF single-moment-5-class microphysics 
schemes are commonly chosen because of both performance and extensive testing. 
Note that, generally, no cumulus parameterization has been applied when using grid 
spacing below approximately 4 km because the cloud elements become partly 
resolved at that scale. More recently, however, scale-aware cumulus 
parameterizations have become available that can be applied to any resolution 
domain.  

Table 1 Common physics scheme/option configurations used by ARL, Air Force, and NSSL 
as of this writing  

Configuration PBL 
scheme SL scheme LSM 

scheme 
Radiation 

scheme 
Microphysics 

scheme 
Cumulus 

parameterization 

ARL (Reen and 
Dumais 2014 

MYJ 
scheme (2) 

Eta 
similarity 

scheme (2) 

Unified 
NOAH 

LSM (2) 

Dudhia/RRTM 
schemes (4) 

WRF single-
moment-5 
class (4) 

Kain-Fritsch 
Scheme (1) 

 

ARL (Dumais et al. 
2013) 

YSU 
scheme (1) 

M-O 
similarity 

(1) 

NOAH 
LSM (2) 

Dudhia/RRTM 
(4) 

WRF single-
moment-5 
class (4) 

None  

ARL (Reen and 
Dumais 2018) 

MYJ 
scheme (2) 

Eta 
similarity 

scheme (2) 

NOAH 
LSM (2) 

Dudhia/RRTM 
(4) 

Thompson 
microphysics 

(8) 

Kain-Fritsch 
Scheme (1) 

AFWA operational 
(DTC 2015) 

YSU 
scheme (1) 

M-O 
similarity 

(1) 

NOAH 
LSM (2) 

Dudhia/RRTM 
(4) 

WRF single-
moment-5 
class (4) 

Kain-Fritsch 
Scheme (1) 

AFWA alternative 
test configuration 

(DTC 2015) 

ACM2 
PBL 

scheme (7) 

Pleim-Xiu 
scheme (7) 

Pleim-Xiu 
LSM (7) 

Dudhia/RRTM 
(4) 

WRF single-
moment-5 
class (4) 

Kain-Fritsch 
Scheme (1) 
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Table 1 Common physics scheme/option configurations used by ARL, Air Force, and NSSL 
as of this writing (continued)  

Configuration PBL 
scheme SL scheme LSM 

scheme 
Radiation 

scheme 
Microphysics 

scheme 
Cumulus 

parameterization 

NSSL operational 
WRF 

MYJ 
scheme (2) 

MYJ 
scheme (2) 

NOAH 
LSM (2)  

Dudhia/RRTM 
(4) 

WRF single-
moment-6 
class (6) 

None (4-km grid)  

High resolution 
rapid refresh 

(HRRR) 

MYNN 2.5 
(5) MYNN (5) 

Rapid 
Update 

Cycle (3) 
RRTMG (4) 

Thompson 
aerosol aware 

(28) 
None  

Notes: M-O = Monin-Obukhov; MYJ = Mellor-Yamada-Janjic; YSU = Yonsei University; ACM2 = Asymetric 
Convection Model 2; MYNN = Mellor-Yamada-Nakanishi-Niino; the G in RRTMG stands for Global Climate 
Model; AFWA = Air Force Weather Agency (now 557th Weather Wing), which is discontinuing use of the 
WRF model in favor of the Global Air Land Weather Exploitation Model (GALWEM) model, which is based 
on the UK Metrological Office model; HRRR may be found at https://rapidirefresh.noaa.gov 
/hrr/HRRR/static/HRRRv3-ESRL/wrf.nl; numbers in parentheses ( ) are option numbers in the WRF model for 
the type of scheme, and represent switches corresponding to the particular physics scheme in the mode. 

Compared with some of the other physical parameterizations included in WRF, 
there seems to be greater diversity in the user community in which PBL/surface 
layer (SL) physics combination is chosen. While the MYJ and YSU schemes are 
both considered “favorites”, the operational models represented in the table suggest 
that this is not universal. In addition, the BL schemes may have multiple options 
for the SL choices, but in the present study we have chosen to couple the most-
common intended SL scheme to a particular BL parameterization choice. Since the 
SL and BL schemes have been designed to work with each other, they are 
considered optimal choices, and we adhere to this criterion here.  

Figure 1 shows the spatial regimes for which the physical parameterizations used 
in mesoscale models may not be strictly valid. A parameterized BL assumes all 
large turbules are subgrid scale and can be treated in an ensemble sense. This is 
similar to deep cumulus convective parameterizations (also known as convective 
parameterizations) originally employed in mesoscale models for grid spacing 
greater than 10 km, where they are necessary to properly represent the release of 
latent heat since the convective eddies are assumed to be entirely subgrid scale. 
This assumption breaks down when using smaller grids, but they have been found 
to be helpful in triggering convection in 5- to 10-km grid applications (Skamarock 
2008). Generally, these cumulus parameterizations are not used when the model is 
capable of resolving the convective eddies, typically at 4- to 5-km grid spacing. As 
an aside regarding deep cumulus convection, true deep-convection resolving (as 
opposed to deep-convection allowing) may not be achieved until grid spacing of 
near 100 m is approached.  

https://rapidirefresh.noaa.gov/hrr/HRRR/static/HRRRv3-ESRL/wrf.nl
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Fig. 1 Horizontal grid-scale dependence of convection and turbulence parameterizations 
(Deng and Stauffer 2006). Cross-hatched areas indicate where the underlying assumptions of 
the physical parameterizations are not strictly valid, and there is currently no robust, 
satisfactory solution in these no-man’s land scale ranges: convection (4–10 km ∆x) and 
turbulence (∆x ~depth of mixed layer). 

The larger convective BL turbulent structures and shallow convection processes, in 
general, start getting essentially fully resolved at scales of approximately 200 m to 
1 km (Bryan et al. 2003; Wyngaard 2004; Deng and Stauffer 2006). Below 
approximately 100 m, large-eddy-simulation (LES) models may be used in an 
attempt to resolve features smaller than the depth of the PBL. However, LES 
models are computationally intensive and likely not practical for use in a 
nowcasting system with a tight time schedule within which they need to run and 
produce the necessary output for decision making. If we wish to resolve features of 
a size scale approximately the depth of the daytime convective BL, a grid spacing 
of approximately 200–350 m is required. A grid spacing of 1 km allows us to 
resolve features approximately 5 km in size, although what constitutes “resolved” 
may be tricky. Skamarock et al. (2008) suggests 7 Δx, for instance. For the purposes 
of this study, the innermost, finest grid has a 1-km grid spacing. This allows us to 
represent a significant portion of the scales we wish to identify and represent in our 
simulations, including moderately fine-scale topographic-induced flows. We are 
confining this study to the development of the daytime convective BL where there 
is no moist convection, and therefore we are not examining the convective 
parameterizations since they parameterize moist convection. Those physics are 
merely turned off for the innermost (3- and 1-km) grids. 
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Our primary goal in this research is to determine which of the BL/SL 
parameterization schemes works best for generalized forward deployments where 
the deployed location is not known in advance. Because the modeling system is 
preconfigured, one scheme will be set up for use in the deployed location, 
regardless of location. Our modeling domain was also chosen to represent a number 
of geographic regions focusing on complex terrain. This goal is challenging from 
the standpoint of not only capturing a complex range of physical processes, land 
use, and elevations, but also accounting for the steep gradients in elevation, which 
can potentially make achieving modeling stability criteria more difficult.  

1.3 Structure of Report 

This report examines the performance of PBL and SL physics in mesoscale models, 
specifically the WRF-ARW modeling system and its use in the WRE-N 
configuration developed by ARL as a means of evaluating the merits of the selected 
BL/SL parameterization schemes. Section 2 describes the PBL and its structure, 
focusing on situations with little synoptic forcing. In this way, we largely consider 
BL physics and processes, in the absence of strong synoptic scale forcing, and 
emphasize the diurnal variation of the PBL. Section 3 describes the various physics 
options presented in the current (v.3.8.1) version of WRF-ARW. Section 4 
describes the model configuration for this set of experiments. The results of this 
series of experiments are described in Section 5. We examine the traditional 
measures of model performance for our tested physical schemes, and examine the 
evolution of the daytime and nocturnal BL, particularly near the surface. Section 6 
summarizes the conclusions. Finally, Section 7 explores some additional 
considerations that are needed to make the WRE-N modeling system viable given 
current computational constraints in light of the limitations of the current hardware 
and software.  

2. Planetary Boundary Layer  

The atmospheric BL is dynamic. It is also not well understood. There is a dearth of 
observational data, and what we know comes from a few well-known field 
experiments over prescribed terrain types. A tabulation of the more-well-known 
experiments that have formed the foundation of today’s turbulence and BL theory 
is given in Stull (1988). Many of these field studies were conducted over 40 years 
ago, and the results still form the basis of many physical parameterization schemes. 
For the most part, these earlier studies were conducted over homogeneous terrain 
and have ignored complex terrain with the intention of being able to replicate the 
basic processes that control the diurnal evolution of the BL. The availability of 
remote sensors such as wind profilers and Light Detection and Ranging (Lidar) 
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have expanded our understanding of BL processes and allow us to make volume 
measurements and profiles rather than only point measurements, filling in the holes 
between measurement points (Wilczak et al. 1996). The Cooperative Atmospheric 
Surface Exchange Study (CASES-99) focused on specific issues related to the 
stable, nocturnal BL, including the transition periods (Poulos et al. 2002). One of 
these goals was to collect data during the transition from a convective to stable BL 
regime and vice versa and compare them with existing models of this transition, 
Most recently, the MATERHORN field experiment (Fernando et al. 2015) focused 
on obtaining measurements of the PBL in a complex terrain environment, but those 
data have not been fully exploited at the time of this writing. Many of the earlier 
field experiments attempted to document the structure and evolution of the BL but 
were extremely limited in scope partly because of limitations in measurement 
technologies. 

2.1 Boundary Layer Development and Structure 

The diurnal variation of the homogeneous BL, PBL, or atmospheric BL (ABL), all 
used interchangeably over land is illustrated in Fig. 2 (Stull 1988). The most-
notable features are the dynamic nature and its complexity. This model of PBL 
structure largely ignores rapidly changing synoptic-scale effects on the structure 
and dynamics of the PBL.  

 

Fig. 2 Diurnal evolution and cycle in PBL structure over land and under quiescent (fair 
weather) conditions (Stull 1988) 
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Aside from this, it is easily seen that the structure of the daytime PBL is very 
different than the nighttime, largely stable PBL. Just after sunrise, a deep mixed 
layer (ML) begins to evolve, which is largely driven by the surface heating created 
by the absorption of solar radiation at the surface and conversion into heat. 
Thermals develop that mix the BL, or “convective” BL (CBL) (hence, the term 
“mixed layer”) until the depth reaches a maximum in the midday and afternoon. If 
adequate moisture is present, the ML is capped by a cloud layer. Thermals 
overshoot into the comparatively overlying stable free atmosphere/air (FA), as air 
from above the capping inversion is mixed into, or entrained into, the ML. Under 
the influence of a typical high-pressure system, there is normally a subsidence 
inversion capping the ML. Despite the stability, stronger thermals are able to 
penetrate into the FA and mix some of it downward into the ML, causing a 
deepening of the ML. The ML actually begins entraining air from above slightly 
after sunrise, and this process continues into late afternoon. 

At nighttime, the BL is quite different. As the surface cools radiatively, the air 
above it cools, resulting in the development of a stable BL (SBL). Above the SBL 
lies the residual layer, which is the remnant of the daytime CBL and where only 
episodic turbulence occurs. It is clear that correctly representing physical processes 
at the surface is also very important; thus, the appropriate choice of a surface 
formulation in numerical simulations is necessary. Correct parameterization of 
radiative processes is also very important. In addition to the development of an 
SBL, an SL develops in direct contact with the surface. The SL is usually very thin, 
hence the need for very high vertical resolution in numerical models near the 
surface. The SL is defined as that part of the BL where turbulent fluxes and stress 
vary by less than 10%, hence this is typically defined as the lower 10% of the BL, 
whether it is the CBL or SBL, and independent of time of day.  

What should be evident is that the BL structure and evolution is highly complex. 
The nocturnal SBL, for example, is extremely difficult to parameterize due to the 
complexity of interacting (and intermittent) subgrid-scale wave and turbulent 
processes and extreme near-surface gradients of atmospheric parameters (Seaman 
et al. 2012). Critical modeling aspects that need to be accounted for include the 
influence of synoptic scale weather patterns, inhomogeneity of the underlying 
surface, complex topography, and instances where the surface happens to be water. 
Aside from these considerations, the BL is also complicated near transition regions, 
for example, from a water surface to land. Simulations of such complex 
environments (Smith et al. 2016a, 2016b) have attempted to bin performance 
statistics on the basis of distance from the shoreline, elevation, topography, and 
latitude, and these subdomains can produce quite different statistics.  
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2.2 Features within the Convective Boundary Layer 

The largest PBL structures have dimensions approximately equal to the depth of 
the PBL (Stull 1988). Examples of these larger structures include both plumes and 
cloud streets. Small-scale flows can arise in complex topography, and the local 
winds that develop can have a significant impact on battlefield operations, whether 
it be for artillery operations or for flight plans involving drones.  

Plumes arise when large convective structures develop from inhomogeneous 
surface heating (Fig. 3). They are commonly present in nearly all daytime 
convective BLs (Kaimal and Businger 1970; Wilczak and Tillman 1980). The 
vertical dimension of plumes is limited by the depth of the daytime PBL, typically 
1–2 km, and the horizontal dimension is roughly the depth of the SL, approximately 
100 m (Stull 1988). Properly resolving these features, at least in the vertical, 
requires a vertical grid spacing of a few hundred meters or less. While LESs are 
available and integrated within the WRF model infrastructure, the ability to resolve 
these features is computationally intensive. Resolving these features in the 
horizontal requires at least 5 grid points, which implies model grid spacing of a few 
hundred meters to approximately 1 km.  

 

 
Fig. 3 BL plume structures. The vertical dimension is determined by the depth of the BL, 
and is typically equal to or larger than the horizontal dimension of the plumes. Smaller-scale 
turbulent motions exist within the cloud structure (Reproduced with permission from 
http://lidar.ssec.wisc.edu/papers/akp_thes/node6.htm). 

Under certain conditions of shear and stability, horizontal roll circulations may be 
present (Etling and Brown 1993). Roll circulations are visible in satellite imagery 
where sufficient moisture is present, forming cloud streets. A diagram of these rolls 
is shown in Fig. 4. Cloud streets form along and at a small angle to the geostrophic 



 

Approved for public release; distribution is unlimited 
11 

wind. The circulations that develop, including alternating updraft and downdraft 
circulations, are superimposed on the large-scale flow. The vertical depth of these 
circulations is on the same order as plumes, limited by the depth of the PBL. Diurnal 
variation in the depth of the PBL occurs and modulates the formation of these 
circulations. The horizontal dimensions of these rolls frequently exceed the depth 
of the PBL, the smallest horizontal dimensions being approximately the depth of 
the PBL. Roll circulations are readily observed in satellite imagery, particularly 
when cold air advects over open warm water, a good example being those that occur 
during winter off the east coast of the United States over the warm Gulf Stream. 
While this example is the most easily observed, cloud streets also form over land, 
and the circulations may be present in drier environments that are incapable of 
supporting cloud formation.  

 
Fig. 4 Structure of horizontal BL rolls, showing the circulations that develop and 
associated sinusoidal behavior of the vertical motion field. The wavelength of these rolls is 
approximately 2–5 km. Cloud streets form in sufficiently moist BLs in the upward circulation 
between rolls. (Alpers and Brummer 1994). 

In addition to PBL features, topographically induced circulations may develop 
within the PBL that have significant impact on battlefield operations. Mountainous 
terrain must be represented within these models by the use of high-resolution 
topography and land-use information commensurate with the grid scale chosen for 
each nested domain.  
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2.3 Sources of Model Error 

Forecast error related to numerical weather prediction (NWP) is a continuing topic 
of discussion in numerical modeling textbooks (e.g., Warner 2011) and in the 
published literature. Stauffer (2013) explores the uncertainty in environmental 
NWP modeling. At a high level, errors can be grouped into 2 general categories: 
model error and measurement error. Since both observations and models contain 
information representing different scales, this contributes to a degree of uncertainty. 
We need to consider the sampling, what both the model and the instruments are 
representing, and over what time and spatial scales. Rarely do these match. If we 
look at modeling error, there are 3 sources of error: initial and lateral boundary 
conditions, numerics, and physics. Models also need to “spin up” so that the 
simulated atmosphere is allowed a chance to achieve balance (i.e., adjusting to 
equilibrium) and thus create the circulations that respond to the initial conditions 
supplied, and the topography. This problem of ingesting local observations and 
allowing spin-up is mitigated in numerical weather prediction by applying a 
common data assimilation approach through a portion of the forecast—
“observation nudging” (Liu et al 2005; Deng et al. 2009), or relaxing the model 
gradually toward the observations. In our research we incorporated the 
observational nudging scheme built into WRF called Four-Dimensional Data 
Assimilation (FDDA) (Reen 2016) the initial 6 h of the forecast. It is not applied at 
a single time; rather, it is a continuous form of data assimilation since it is applied 
at every time step over a specified period. Nudging is computationally efficient, 
continuous, and adaptable to fine grids such as those used here, although nudging 
cannot as readily handle indirect observations of weather parameter as variational 
data assimilation approaches.  

Lateral boundary errors can also arise due to advection from outside the grid where 
initial conditions are not prescribed due to lack of data. Hence, the nesting used in 
high-resolution models must account for the propagation of meteorological (and 
other physical) properties from outside the nest under consideration. 
Meteorological phenomena typically propagate with speeds of 5–50 ms–1, but 
external gravity waves can travel with speeds as high as 300 ms–1, which controls 
how quickly errors introduced at the lateral boundary conditions can sweep through 
the domain. In addition, it is advisable to avoid placing lateral boundaries in regions 
of strong topography (e.g., mountains) because of the strong vertical stratification 
of the atmosphere compared with the horizontal (Warner et al. 1997). Because 
rapidly varying topography results in large gradients and accelerations that are not 
treated realistically by the lateral boundary conditions, the inertia–gravity waves 
produced by misrepresenting the effects of this forcing can propagate rapidly to the 
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domain interior. This is also one factor limiting the nesting of finer vertical grids in 
mesoscale models. 

Aside from the representativeness in the observations land use/soil properties and 
their initial conditions, and potential quality control issues, recent studies have 
identified a potential geolocation issue with the WRF modeling system (Monaghan 
et al. 2013). This issue could be more problematic with the use of high-resolution 
configurations, as the modeling system is now regularly used at 1- to 10-km grid 
spacing. WRF uses a spherical coordinate system, as opposed to the more accurate 
assumption of a spheroidal shape. This can introduce significant error in the 
mapping of geographic data, as great as 10–20 km, which offsets the data by several 
grid points when using 3- or 1-km grid nests like those used here. This problem was 
reported by Monaghan et al. (2013), and the issue came up in earlier analyses 
performed at ARL by Foley et al. (2015) and Smith et al. (2016a, 2016b). 
Monaghan et al. (2013) state that in the mid-latitudes the location of a point can 
vary between spheroidal and spherical earth models by more than 20 km.  

In studies involving GIS we use both a projection and a datum. A projection is a 
mathematical formula for flattening a 3-D earth onto the flat surface of paper or a 
computer screen. There are 3 qualities that are important for a projection: shape, 
area, and distance. A projection can preserve only 1 or 2 of these but never all 3. 
The purpose of a datum is to compensate for the fact that the earth is not a perfect 
sphere but is rather oblate with a somewhat “lumpy” (uneven) surface. In the United 
States, North American Datum of 1983 (NAD83) has been a very common datum 
and the datum used in GIS-related studies at White Sands Missile Range, New 
Mexico. The World Geodetic System 1984 (WGS84) was constructed with satellite 
measurements and is very similar to NAD83. Error could potentially be introduced 
when PointStat matches up the WRF surface that has a conic conformal projection 
and no datum-to-surface observations in NAD83 datum (even though no 
projection/datum is stated with the surface observations). When the WRF surface 
was imported directly into GIS, the spherical, no-datum orientation was converted 
to NAD83 datum with assigned projection and the data geolocated properly (Foley 
2015). 

In terms of the actual model, as long as all the input data sources are on WGS84 
with no attempt to convert to a sphere, although WRF may be off by 20 km in 
latitude since the input data sources are shifted by that same amount, everything 
lines up with itself. The only exceptions to this would include 1) when the input 
coarse grid model data (e.g., GFS) may also be assuming a spherical earth and thus 
not consistent with the topography (the coarseness of the GFS data used should 
minimize the impact of this shift) and 2) when latitude-dependent processes have 
errors; for example, the Coriolis effect and sun angle (the difference in the strength 
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of Coriolis 20 km apart minimal compared with other forcings, as would the 
differences caused by the variation in sun angle). Thus, it is not believed that this 
represents a significant source of error in our analyses.  

We also need to consider the validity of various modeling assumptions. For 
example, many of the current PBL and SL schemes have been developed when 
model resolution was typically much coarser than present day modeling systems. 
Others are much newer. Some of the assumptions that went into developing these 
formulations may no longer be valid with smaller (sub-kilometer) grid spacing. The 
Shin-Hong (SH) scheme was developed to address the potential issue of scale 
awareness when sub-kilometer-scale grids are used. While many of the 
assumptions used in these schemes may still be fine for the stable nocturnal BL, the 
assumptions may not hold for the deeper, daytime convective PBL where ∆ ~ l, 
where Δ represents the grid spacing and l is the length scale of the BL, which is 
largely controlled by the BL depth.  

This is not an all-inclusive discussion of the sources of model error and model 
verification. However, it does shed light on the challenges we face in assessing 
model performance and the sources of error most applicable to the current study. 
While the fundamental sources of uncertainty in mesoscale modeling have been 
discussed, neither has every source of model error been considered and 
incorporated into the analysis, nor is it possible to completely address all of the 
issues involving the introduction of model error.  

3. WRF Boundary-Layer/Surface-Layer Physics Packages 

A variety of PBL schemes have been included with WRF since its inception 
(Pagowski 2004). These schemes have evolved in complexity and number since the 
initial version of the model. WRF v3.8.1 contains 13 distinct, selectable PBL 
schemes, and for the most part each is paired with at least 1 SL scheme. Some PBL 
options allow the choice of more than one coupled SL scheme. In addition to the 
PBL/SL schemes, WRF allows the use of an LES model that may be used for finer-
grid spacing simulations. Because of the computational expense associated with 
running WRF at the resolutions necessary for LES, we have limited our finest-grid 
spacing to 1 km and thus have confined our study to the traditional PBL/SL 
schemes. 

3.1 WRF v.3.8.1 Boundary-Layer/Surface-Layer Schemes 

WRF contains a number of user selectable BL and SL schemes. Table 2 lists the 
available PBL/SL schemes and combinations within the WRF v3.8.1 modeling 
system framework. Noninclusive of the aforementioned LES option, there are 13 
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options for the PBL. Each PBL option is coupled to one or more SL scheme(s). The 
table also gives the year of the inclusion into WRF, and lists the prognostic and 
diagnostic variables associated with each scheme (where applicable). The final 
column indicates whether it is a local, nonlocal, or hybrid scheme. The latter is 
important when it comes to understanding how the scheme has been designed to 
represent the gradients associated with the internal calculations and gives insight as 
to what eddy size the scheme is best suited to represent. Local schemes calculate 
the gradient by using adjacent vertical grid points and thus may represent the 
smaller-scale eddies and their effects better. Nonlocal schemes typically are 
expected to perform better in capturing physical processes associated with the 
larger BL eddies. While hybrid schemes may be expected to perform well with 
either eddy size, this is not necessarily always the case. Generically then, PBL 
schemes may be categorized into 3 categories based on this criteria. 

Table 2 Planetary BL and SL options available in WRF v3.8.1 including pairing information, 
prognostic and diagnostic variables available in each scheme, and whether it is a local, 
nonlocal, or hybrid scheme 

PBL scheme WRF 
option 

Year 
intro. 

SL 
pairing Prog. var. Diag. var. 

Local/ 
nonlocal 
/hybrid 

Yonsei University Scheme 
(YSU) (Hong et al. 2006) 1 2004 1,91 . . . exch_h N 

Mellor-Yamada-Janjic 
Scheme (Janjic 1994) 2 2000 2 TKE_PBL el_myj, exch_h L 

NCEP Global Forecast System 
Scheme (Hong and Pan 1996) 3 2005 3 TKE_PBL el_pbl, exch_h, 

exch_m . . . 

Quasi-normal Scale 
Elimination (QNSE) Scheme 
(Sukoriansky et al. 2005) 

4 2009 4 QKE Tsq, Qsq, Cov, 
exch_h, exch_m L 

Mellor-Yamada-Nakanishi-
Niino (MYNN) Level 2.5 and 
Level 3 Schemes (Nakanishi 
and Niino 2006, 2009) 

5, 6 2009 1,2,5,91 QKE, Tsq, 
Qsq, Cov exch_h, exch_m L 

Asymmetric Convection 
Model 2 Scheme (ACM2) 
(Pleim 2007a) 

7 2008 1,7,91 . . . . . . H 

Bougeault-Lacarrère Scheme 
(BouLac) (Bougeault and 
Lacarrère 1989) 8 2008 1,2,91 TKE_PBL 

el_pbl, exch_h, 
exch_m,wu_tur, 
wv_tur, wt_tur, 

wq_tur 

L 

University of Washington 
(turbulent kinetic energy 
(TKE) Boundary Layer 
Scheme (Bretherton and Park 
2009) 

9 2011 1,2,91 TKE_PBL exch_h, exch_m L 
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Table 2 Planetary BL and SL options available in WRF v3.8.1 including pairing information, 
prognostic and diagnostic variables available in each scheme, and whether it is a local, 
nonlocal, or hybrid scheme (continued) 

PBL scheme WRF 
option 

Year 
intro. 

SL 
pairing Prog. var. Diag. var. 

Local/ 
nonlocal 
/hybrid 

Total Energy Mass Flux 
(TEMF) Surface Layer 
Scheme (Angevine et al. 2010) 

10 2011 10 TE_TEMF *_temf H 

Shin-Hong Scale–aware 
Scheme (Shin and Hong 2015) 11 2013 1,91 . . . exch_h, tke_diag H 

Grenier-Bretherton-McCaa 
Scheme (Grenier and 
Bretherton 2001) 

12 2015 1,91 TKE_PBL el_pbl, exch_tke L 

Medium Range Forecast 
Scheme (Hong and Pan 1996) 99 2000 1,91 . . . . . . N 

 
Cohen et al. (2015) summarized the characteristics of a number of schemes from 
WRF v3.3.1. Their detailed analysis involved a cold-season severe convective 
situation over the southeastern US. Since v3.3.1, a number of schemes and 
enhancements have been added to the model. Since WRF is not a static modeling 
system, the available packages are updated, and some removed and replaced, on a 
regular basis. We describe the schemes available in WRF v.3.8.1 here. While Cohen 
et al. (2015) is not the only comparative study performed on the WRF PBL 
schemes, it is one of the newest and most comprehensive. As is the case with the 
other reviewed studies, Cohen et al.’s study applies to one specific environment 
and set of synoptic conditions. 

3.1.1 Yonsei University Scheme (YSU) 

The YSU (Hong et al. 2006) is a nonlocal first-order closure scheme that is similar 
to the Medium Range Forecast model (MRF) scheme, except it explicitly represents 
entrainment at the top of the PBL. Its origins are from the MRF scheme. The 
original MRF scheme evolved into the YSU and GFS schemes. Later, the SH 
scheme evolved from the YSU scheme.  

The YSU scheme was developed as an improved replacement in WRF for the MRF 
scheme. It is a nonlocal-K (eddy diffusivity) scheme with an explicit entrainment 
layer and a parabolic K profile in unstable mixed layers. It includes a topographic 
correction for surface winds to represent extra drag from subgrid topography and 
enhanced flow at hill tops (Jimenez and Dudhia 2013). The topographic correction 
option works with the YSU PBL only, and it was introduced in WRF v3.4. Further 
improvements to the YSU scheme include a simpler terrain-variance-related 
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correction and an option for top-down mixing driven by radiative cooling. While 
the scheme more accurately simulates deeper vertical mixing in buoyancy-driven 
PBLs with shallower mixing in strong-wind regimes compared with MRF (Hong 
et al. 2006), it still has been found to over-deepen the PBL for springtime deep 
convective environments. This results in in too much dry air near the surface and 
underestimation of mean layer convective available potential energy related to deep 
convection (Coniglio et al. 2013). 

3.1.2 Mellor-Yamada-Janjic Scheme (MYJ) 

The MYJ Scheme (Janjic 1994) is a local 1.5-order closure scheme that includes a 
prognostic equation for turbulent kinetic energy (TKE). It was the operational 
scheme used in the Eta model and includes a 1-D prognostic TKE scheme with local 
vertical mixing. While this scheme improves upon the original Mellor-Yamada 1.5-
order local scheme (Mellor and Yamada 1974, 1982), without particularly large 
computational expense, it under-mixes PBL for locations upstream of spring 
convection (e.g., Coniglio et al. 2013). 

3.1.3 National Center for Environmental Prediction (NCEP) Global 
Forecast System Scheme 

The NCEP Global Forecast System Scheme (Hong and Pan 1996) is available for 
the WRF Nonhydrostatic Mesoscale Model version only. It is the scheme currently 
used in NCEP’s operational numerical weather prediction model GFS. Since this 
scheme is not available for use with WRF-ARW, it has not been evaluated in this 
study.  

3.1.4 Quasi–normal Scale Elimination (QNSE) Scheme 

Similarly to the MYJ scheme, the QNSE scheme (Sukoriansky et al. 2005, 2008) 
is a local 1.5-order local-closure scheme designed to account for wave phenomena 
within stable BLs. It includes a TKE-prediction option that uses a novel formulation 
for stably stratified regions and has been an option in WRF since v3.1. In the 
daytime CBL, the scheme uses an eddy diffusivity mass-flux method with shallow 
convection added in v3.4. QNSE was found to provide a realistic depiction of 
potential temperature profiles, PBL depth, and kinematic profiles based on 
comparison with observational data and corresponding large eddy simulations 
(Kosovic and Curry 2000) under stable conditions. However, as with the MYJ 
scheme, in the case of less-stable PBLs, QNSE results in too cool, moist, and 
shallow PBLs in simulations of springtime convective environments (Cohen et al. 
2015). 
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3.1.5 Mellor-Yamada Nakanishi Niino (MYNN) Levels 2.5 and 3 Schemes 

The MYNN Levels 2.5 and 3 Schemes (Nakanishi and Niino 2006) include 2 
options: a 1.5-order (MYNN2) and second-order (MYNN3) closure scheme. Like 
the QNSE scheme, MYNN is a local scheme based on results from comparison 
with large eddy simulations. In contrast, the original Mellor-Yamada PBL scheme 
(Mellor and Yamada 1974, 1982) on which this scheme is based expresses stability 
and mixing length and is based on comparison with observations. The expressions 
for mixing length with MYNN are applicable to a greater variety of static stability 
regimes than the original formulation (Nakanishi and Niino 2009). The MYNN 
Level 2.5 PBL predicts subgrid TKE terms and first appeared in WRF v3.1, with 
significant updates in v3.8. Subgrid-scale clouds from MYNN are coupled with 
radiation, and cloud water and ice mixing is included. These options are new in 
v3.8. MYNN2 is less computationally expensive than MYNN3, but in addition to 
the improvements with MYNN 2.5, MYNN3 better simulates deeper mixed layers 
than the Mellor-Yamada PBL scheme (Mellor and Yamada 1974, 1982), and 
MYNN3 reasonably represents statically stable BLs in the case of radiative fog 
development (Nakanishi and Niino 2006). MYNN2 improves the PBL over 
nonlocal PBL schemes for springtime PBLs that support deep convection (Coniglio 
et al. 2013). However, as with the MYJ scheme, the local formulations of both 
MYNN2 and MYNN3 still may not fully account for deeper vertical mixing 
associated with larger eddies and associated countergradient flux. 

3.1.6 Asymmetric Convection Model 2 Scheme (ACM2) 

The ACM2 Scheme (Pleim 2007b) is a first-order closure hybrid scheme where 
upward fluxes within the PBL are represented as interactions between the SL and 
every layer above (including local eddy diffusion), while downward fluxes extend 
from each layer to each immediately underneath. Convective plumes in the PBL 
arise from the diurnally heated SL, whereas downward fluxes are more gradual. In 
the ACM2 PBL we have nonlocal upward mixing and local downward mixing. This 
scheme was added in WRF v3.0 (Pleim 2007a) and asserts that the PBL potential 
temperature and wind velocity profiles are depicted with greater accuracy when 
both local and nonlocal viewpoints are considered regarding vertical mixing. Pleim 
(2007b) further validates the use of the ACM2 scheme because PBL depths 
produced by the scheme are similar to those derived from afternoon wind profiler 
data. However, Coniglio et al. (2013) find errors for evening soundings supporting 
deep convection with ACM2 over-predicting the depth of the PBL. 
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3.1.7 Bougeault–Lacarrère Scheme (BouLac) 

The BouLac Scheme (Bougeault and Lacarrère 1989) is a 1.5-order local closure 
scheme including a prognostic equation for TKE. Its design is most relevant for 
terrain-enhanced turbulence (e.g., wave phenomena) and its impact on the PBL. 
The BouLac was first incorporated in WRF v3.1 and specifically designed for use 
with the Building Effect Parameterization urban model (Salamanca et al. 2011). It 
was found to improve representation of the PBL in regions of higher static stability 
compared with nonlocal schemes in similar environments (Shin and Hong 2011).  

3.1.8 University of Washington (UW) TKE Boundary-Layer Scheme 

The UW Boundary Layer Scheme (Bretherton and Park 2009) is a 1.5-order local 
closure scheme that attempts to improve upon the Grenier-Bretherton-McCaa 
model including accounting for relatively longer time steps (relevant for climate 
models), diagnosing rather than forecasting TKE and focusing computations over 
a number of layers determined by the vertically varying stability of the 
thermodynamic profile. The UW scheme is from the Community Earth System 
Model (Hurrell et al. 2013) and was introduced in WRF v.3.3. While UW was 
developed to provide a better depiction of the nighttime stable BL than existing 
PBL schemes at the time, substratocumulus layers develop that are too moist 
relative to results from large eddy simulations (Holtslag and Boville 1993). 
Nonlocal PBLs are less moist and well mixed using the UW scheme than LES 
models, which are too moist. This scheme has similar disadvantages as with the 
MYNN and BouLac schemes, meaning it does not adequately address the effects 
of larger eddies and the counter-gradient corrections associated with these larger 
eddies. 

3.1.9 Total Energy Mass Flux (TEMF) Surface Layer Scheme  

The TEMF scheme (Angevine et al. 2010) is a 1.5-order closure hybrid scheme 
including a nonlocal component represented by updrafts triggered by upward heat 
fluxes originating at the surface, creating mass fluxes throughout the PBL by 
applying a counter-gradient correction (Angevine 2006). The scheme is 
summarized by Cohen et al. (2015). The local component is triggered under 
statically stable conditions using a total turbulent energy concept that eliminates 
buoyant destruction of TKE during high static stability (Mauritsen et al. 2007). The 
scheme includes a subgrid total energy prognostic variable plus mass-flux-type 
shallow convection. TEMF was incorporated in WRF v.3.3. The scheme compared 
favorably with LES results for observations from the 2006 Texas Air Quality and 
Gulf of Mexico Atmospheric Composition and Climate Study (Texas Air Quality 
Study II/Gulf of Mexico Atmospheric Composition and Climate Study) around 
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Houston, Texas (Angevine et al. 2010). It gives improved PBL profiles with 
shallow cumulus clouds compared with the LES models (Angevine et al. 2010). 
However, the scheme produces excess drying beneath BL stratocumulus clouds and 
is moister within the lower cloud layer than results from the LES models, indicating 
excessive moisture flux across the lower cloud boundary in the TEMF scheme 
(Angevine et al. 2010). 

3.1.10 Shin-Hong Scale-Aware Scheme 

The SH Scale-Aware Scheme (Shin and Hong 2015) is relatively new in WRF, first 
appearing in WRF v.3.7. This hybrid scheme incorporates a scale dependency for 
vertical transport in the convective PBL. Vertical mixing in the stable PBL and free 
atmosphere follows YSU. The main improvements in the SH PBL scheme include 
prescribing the nonlocal heat transport profile fitted to the output from an LES 
model and the inclusion of an explicit scale-dependency function for vertical 
transport in CBL. Thus, the SH PBL parameterization is designed to work at the 
gray zone (100 m to 1 km) resolution for the CBL. Subgrid-scale transport is 
described by Shin and Hong (2013). Nonlocal transport (large eddies) and local 
transport (smaller eddies) are calculated separately. Subgrid-scale transport is 
multiplied by a grid-scale-dependency function, and the local transport is then 
calculated through an eddy diffusivity formulation containing both subgrid scale 
and local terms. The grid size dependency is in the form of an empirical function 
fitted to reference data from a free convection case. This scheme also has diagnosed 
TKE and mixing length as output.  

3.1.11 Grenier-Bretherton-McCaa Scheme 

The Grenier-Bretherton-McCaa Scheme (Grenier and Bretherton 2001) is a local 
TKE scheme tested in cloud-topped PBL cases. This scheme combines a level-1.5 
turbulent closure model with an entrainment closure at the top of the PBL. The 
model performs very well in cases of dry convection and also performs well in 
stratocumulus-topped BLs with models configured with 15 hPa or better vertical 
resolution. The authors of this scheme recommend that for comprehensive 
simulation of BL convection this scheme be coupled with a shallow cumulus 
parameterization scheme. This is a TKE scheme and first appears in WRF v.3.5.  

3.1.12 Medium Range Forecast Scheme 

The MRF Scheme is a first-order closure nonlocal scheme that incorporates a 
countergradient correction term into downgradient diffusion expressed solely by 
local mixing. The original formulation of the MRF scheme has implicit treatment 
of the entrainment layer as part of nonlocal-K mixed layer (Troen and Mahrt 1986), 
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and the original scheme is offered as separate option (99) in WRF v3.8.1, along 
with the YSU PBL option (1), which is an improved MRF scheme rewritten 
specifically for WRF. Compared with local PBL schemes, the MRF scheme was 
designed to more accurately simulate the deeper mixing within an unstable PBL 
where larger eddies entrain higher potential temperature air from above the PBL 
into the PBL (Wyngaard and Brost 1984; Stull 1993). The MRF scheme was found 
to depict too deep of a PBL, especially in strong wind regimes at night (Mass et al. 
2002), an issue particularly troublesome in wind energy simulations and the 
excessive mixing results in over-erosion of convective initiation (Bright and Mullen 
2002). 

3.2 Other PBL Scheme Intercomparison Studies 

Prior to WRF, PBL scheme investigations took place using earlier models, such as 
the Penn State National Center for Atmospheric Research (NCAR) Model (MM4 
and MM5), as these schemes were being developed and incorporated into 
mesoscale models. Holt and Raman (1988) investigated first-order and TKE 
closure schemes and compared model statistics with observations. They found that 
the mean structure of the PBL is fairly insensitive to the type of closure, and that 
TKE closure is preferable to first-order closure in predicting the overall turbulent 
structure of the PBL. As LES models became formulated and available, Ayotte  
et al. (1996) noted weaknesses in representing entrainment and employed tuning 
techniques using LES data to improve simulations. In that study the PBL scheme 
changes were applied by actually going into the code and modifying the physical 
processes.  

The YSU and MYJ BL schemes were evaluated for WRF with an innermost grid 
of 1.33-km resolution for simulations of Hurricane Isabel (Nolan et al. 2003a, 
2003b). These schemes were chosen for comparison since both are widely used and 
are based on entirely different methods for simulating the PBL (Nolan et al. 2003a). 
The original YSU and MYJ schemes were modified to have ocean roughness 
lengths in closer agreement with observations. Increasing the horizontal resolution 
around the eyewall also leads to improved BLs as well as an improvement of the 
vertical structure of the inner-core wind field (Nolan et al. 2003b).  

Hu et al. (2010) tested 3 WRF v.3.0.1 PBL schemes, namely MYJ, YSU, and 
ACM2, comparing observational data over eastern Texas for air quality purposes. 
They performed 92 runs and examined surface data and vertical profiles where 
available. They found that the differences between the schemes were primarily due 
to vertical mixing strength and entrainment from air above the PBL. They 
performed a sensitivity experiment to confirm this hypothesis. The ACM2 and YSU 
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nonlocal schemes showed less bias than the MYJ (local), which had insufficient BL 
mixing. They later looked at an improved YSU scheme (Hu et al. 2013) and 
concluded that the improvements appear to have corrected the overestimates in the 
temperature and wind profiles. The schemes under-predict temperature and over-
predict moisture, and at nighttime the YSU scheme produces higher temperatures 
and winds. The ACM2 profiles appeared slightly better than the other schemes in 
this study.  

Wang et al (2011) performed a spectral analysis of wind speed time series on the 
results from 4 BL schemes and found that there were no pronounced differences 
between them. However, the simulation results from the QNSE are the closest to 
observation for their simulations in the arid climates, scarce vegetation, and 
complex terrain of China.  

Shin and Hong (2011) evaluated the YSU and ACM2 schemes (first-order closure) 
and 3 TKE schemes (MYJ, QNSE, and BouLac) for CASES-99 over Kansas using 
WRF v.3.2 and found that all schemes have difficulty at night, having large biases. 
Under statically stable conditions, no scheme performed satisfactorily. Neither the 
surface BL nor the upper inversion was resolved well, but the TKE schemes 
generally outperformed the first-order schemes.  

Balzarani et al. (2014) analyzed the performance of 5 PBL schemes—ACM2, 
MRF, YSU, MYJ and UW—using a 5-km grid spacing domain of WRF v.3.2 and 
found that all 5 parameterizations produce similar performances in terms of 
temperature, mixing ratio, and wind speed near Milan, Italy, implying some 
systematic errors in all simulations. However, their analysis was limited only to 
model bias with major application to air quality. Their study concluded that 
temperature forecasts seem to impact the early evolution of the PBL depth, while 
entrainment fluxes parameterizations have major influence on the afternoon 
development. Over-prediction of temperature and wind speed produce excessive 
mixing. The MRF, MYJ, and ACM2 schemes use a similar approach in 
representing the entrainment process and overestimate the PBL depth. The best 
agreement between model and both Lidar and balloon observations was identified 
as YSU. 

HariPrasad et al. (2014) compared the MYJ, MYNN, QNSE, YSU, ACM2, 
BouLac, and UW schemes using sonde, met tower, and sonic anemometer data over 
India. For WRF v3.4 they found that MYNN and YSU were in closer agreement 
with the observations. Shrivastava et al. (2014) examined the BL/SL combinations 
of YSU-Monin-Obukhov (MO), ACM2-MO, MJY-MO, and QNSE-QNSE BL/SL 
scheme pairings on a 3-km grid over India and found that the MYJ-MO scheme 
pairing performed slightly better than the others tested. In addition, the 
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Development Testbed Center (DTC) compared 2 configurations of the then AFWA 
(now 557th Weather Wing) operational schemes, ACM2-Pleim-Xiu (PX), and 
YSU-PX BL/SL configurations and the relative performance was related to time of 
day (DTC 2015).  

Cuchiara et al. (2014) tested the YSU, ACM2, MYJ, and QNSE schemes over a 
Houston, Texas-centered domain and obtained high correlation coefficients and 
small biases for all of the meteorological variables tested. Variables analyzed 
included the temperature, potential temperature, mixing ratio, relative humidity 
(RH) and the u and v wind components. Despite similar performance, the YSU 
scheme provided the best agreement with ozone observations. 

In a relevant recent study focusing on the prediction of near-surface and PBL 
properties over complex terrain, Dimitrova et al. (2014) examined 6 PBL options 
(YSU, MRF, ACM2, MYJ, BouLac, and QNSE). Extensive observational data 
were available from the MATERHORN program. While all over-predicted the 
minimum temperature inside the “valley cold pool”, the QNSE scheme was the best 
performer for near-surface temperature (2m) and wind (10m). 

While our primary research interests are not in tropical storms or in air quality but 
in complex terrain environments for land mobility, these studies are useful in 
illustrating how the scheme selection process can be a function of the geography 
and climatology of the model domain. In summary, none of the earlier studies 
showed a clear preferred scheme that could be universally applied to all geographic 
regions, season, and time of day. The WRF model is not static, and physical 
schemes are being continually added, removed, and modified. Finally, we have the 
issue of verification. In most cases, observational data were used. However, where 
there are insufficient observations, sometimes LES models are used as a proxy 
(Ayotte et al. 1996). Therefore, it is challenging to find a single configuration that 
works optimally in all environments, and under all synoptic conditions and 
geographic regions.  

3.3 Direction 

What should become clear is that each scheme is designed using a particular set of 
observations, LES simulations, or BL conditions as validation. Validation comes 
from a variety of methods (e.g., observations and LES models) and different 
meteorological conditions. In addition, the physics of the stable and unstable PBL 
are quite different, leading to a “stability dependency” between the various 
schemes. While one particular scheme may perform best under certain conditions, 
another may be optimal under entirely different meteorological conditions or 
environments. A variety of local, nonlocal, and hybrid schemes are represented. 
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Since hybrid schemes have a local and nonlocal component, they have the potential 
for representing large- and small-scale eddies well. The purpose of this research is 
to investigate the utility of a single scheme in complex topography and under a 
reasonable variety of land use and flow regimes. Another objective is to examine 
the feasibility of using BL/SL parameterization combinations to construct a simple 
physics-based ensemble that would provide crude measures of forecast uncertainty 
or confidence.  

4. Domain and Model Configuration 

The numerical model used in this analysis, the WRF-ARW (Skamarock 2008), is a 
community weather forecast model designed and supported by NCAR. For the 
purposes of this study, WRF v3.8.1 was selected. This community model has a 
major update every year with minor revisions and bug fixes applied about 4 months 
later. At the time of this study, v3.8.1 is the latest version of the modeling system 
that includes the minor revisions; hence, it was selected. The WRF has an advantage 
over most current operational models such as the Global Air Land Weather 
Exploitation Model (GALWEM, Stoffler 2016) and the GFS because it includes a 
variety of user-selectable physical parameterization scheme options. This is 
advantageous in constructing physics-based ensembles that can yield a measure of 
model uncertainty due to the included model physics. Aside from the selection of 
various physics options, initial conditions may be varied easily from within the 
model construct.  

The model specifications common to all 7 experiments using WRF-ARW as 
employed in this study are shown in Table 3.  

Table 3 WRF-ARW common namelist options used for this study 

Namelist parameter Option selected 

Shortwave radiation Dudhia Scheme 

Longwave radiation RRTM 

Explicit moist microphysics Thompson 

Cumulus parameterization Kain-Fritsch 9 km only, explicit 1,3 km 

PBL Scheme Varies (see table 5) 

Surface layer Paired with PBL Scheme (Table 5) 

Land Surface Scheme NOAH 

Time step to grid ratio (seconds:kilometers) 3:1 

Horizontal subgrid diffusion Second-order on coordinate surfaces 

Subgrid turbulence closure Horizontal Smagorinsky first-order 
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Table 3 WRF-ARW common namelist options used for this study (continued) 

Namelist parameter Option selected 

Number of vertical terrain-following levels 57 

Vertical velocity damping Yes 

Feedback (2-way interactive) Yes 

Nesting Yes 

Terrain slope shadow Yes 

FDDA Yes 

Nudging strength 4.0 × 10-4 s-1 

 
The FDDA option used in these model runs is based on observation nudging (Liu 
et al. 2005; Deng et al. 2009). This option is much less computationally expensive 
than traditional 4-D variational data assimilation (Huang et al. 2009) or ensemble 
Kalman filtering (Zupanski et al. 2008) and is thought to be a viable method for 
asynoptic meteorological observation assimilation and deterministic fine-scale 
modeling applications such as those the Army is interested in. Schroeder et al. 
(2006) describes some earlier work that includes a nudging data assimilation 
component for Army applications. For a forward-deployed system, it is important 
that we incorporate computationally conservative techniques as much as possible.  

Observation nudging is employed within the WRE-N framework because ARL is 
interested in integrating the continuous data assimilation strategy of observational 
nudging as an additional tool for assimilating forward battlefield observations not 
routinely ingested into the upstream boundary condition model (e.g., from coarser 
grid models provided by the 557th Weather Wing or other sources) that apply an 
intermittent or cycling 3-D variational data assimilation system for WRF or MM5 
(Surmeier and Weigel 2004) or newer techniques within GALWEM (Stoffler 
2016). These observations include, but are not limited to, local surface mesonets 
and sensors, local rawinsonde/dropsondes, sensors onboard aircraft, and unmanned 
aerial vehicle sensors. Tropospheric Airborne Meteorological Data Reporting 
(TAMDAR) measurements (Jacobs et al. 2014) were ingested separately. In these 
simulations, TAMDAR data were processed in addition to the Meteorological 
Assimilation Data Ingest System (MADIS) data for model initialization. The data 
sources chosen to be assimilated into the initialization for these runs are listed in 
Table 4.  
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Table 4 Initialization and nudging data switches (aside from coarse grid model data) used in 
the preprocessing package RUNWPSPLUS for WRF-ARW runs examined in this study 

Setting name Setting value 

use_tamdar Yes 

use_madis_mesonet Yes 

use_madis_profiler_npn Yes 

use_madis_profiler_npn Yes 

use_madis_acars Yes 

use_madis_maritime Yes 

use_madis_metar Yes 

use_madis_raob Yes 

use_madis_sao Yes 

use_madis_satwind No 

use_madis_satwind1h No 

geog_data_res 2m, 30 s, 30 s 

 
The steps involved in running the WRF model are shown in Fig. 5. The model is 
initialized using coarse grid model output from the GFS model. Additional inputs 
include 1/12° Real Time Global Sea Surface Temperature (Gemmill et al. 2007) 
sea surface temperature data (since part of the model domain is over water), 1-km 
snow data from the National Weather Service’s National Operational Hydrologic 
Remote Sensing Center Snow Data Assimilation System (NSIDC 2004), MADIS 
(NOAA, 2016) observations including surface, rawinsonde, Aircraft 
Communications Addressing and Reporting System, profiler, ship, and buoy data, 
as well as the TAMDAR data. The WRF preprocessing system ingests the model, 
sea surface temperature and snow data to construct initial and boundary conditions 
for the model. Lists provided by NCEP are used to determine MADIS mesonet 
observations that should not be processed due to a history of providing low-quality 
observations. The MADIS and TAMDAR data are then input to the Obsgrid 
program, which provides quality control to the observations and merges the GFS 
data with the quality controlled observations to provide initial conditions for WRF. 
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Fig. 5 Steps in the running of WRF-ARW at ARL, showing the ingest of meteorological 
and coarse grid data, preprocessing, and production of a WRF forecast preceded by a 
preforecast with observational nudging. In this study, the preforecast was 6 h and the forecast 
18 h. 

These steps are configured locally through a RUNWPSPLUS program (Kirby et al. 
2013), which was written in Practical Extraction Report Language (Perl) scripting 
language by Dr Brian Reen of ARL. The RUNWPSPLUS program automates and 
configures much of the preprocessing for WRF. The program also downloads the 
specified (user-selectable) sources of initialization meteorological data for ingest 
into the modeling system except for the coarse grid model data (here, GFS). The 
boundary conditions and initial conditions generated via application of 
RUNWPSPLUS then provide input to the WRF modeling system. The program 
real.exe is used to prepare the input data for use by WRF, and wrf.exe is then run 
to create the forecast. Additionally, the first 6 h of the model run ingests data that 
nudge the forecast toward observations, so the 12Z run incorporates new 
observations via observational nudging until 18Z, and the forecast is computed after 
18Z without additional observations. However, the nudging is gradually decreased 
between 18 and 19 coordinated universal time (UTC) with no new observations 
being assimilated, though the observation nudging is ongoing. Postprocessing is 
achieved using the Unified Postprocessor (UPP)* and the NCAR-supplied Model 
Evaluation Tools (MET) sofware (NCAR 2013), the latter developed at NCAR 
through grants from AFWA and the National Oceanic and Atmospheric 
Administration (NOAA). NCAR is sponsored by the United States National 
Science Foundation. Dawson et al. (2016) discusses automation of the UPP on a 
local workstation. The UPP ingests the NetCDF history files of the WRF to 
interpolate the model output to the National Weather Service standard pressure and 

                                                 
* The UPP is described in the user guide at: https://dtcenter.org/upp/users/docs/user_guide/V3/upp_users_ 
guide.pdf.v3.0. 
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height levels and then generates output on model native levels as well as pressure 
surfaces. It computes the diagnostic quantities for several variables and generates 
all output on an unstaggered Arakawa A Grid in hourly gridded binary (GRIB) files, 
Edition 1. The UPP GRIB files are compatible with MET software.  

This study uses a triple nest configuration of WRF-ARW centered approximately 
near San Diego, California. The domain includes a variety of geography, land use, 
and topography. The marine environment, coastal environment, large valley, gently 
sloping desert, and mountainous terrain are all represented. Regarding land use, 
there are urban, suburban, agricultural, grassland, arid, and mountainous areas with 
a variety of subtropical and mid-latitude vegetation including grassland and forest. 
The domains are shown in Fig. 6. WRE-N was employed an outer 9-km nest of 175 
× 175 grid points (1566 × 1566 km) (D1), 242 × 241 grid points on the middle  
3-km nest (720 × 720km) (D2), and 127 × 127 grid points on the 1-km inner nest 
(126 × 126 km) (D3). The model top was selected to be 10mb, which is quite 
conservative. 

 

Fig. 6 Map of the model domain for these experiments. The configuration consists of a 
triple nested domain (9-3-1 km) centered approximately over San Diego, CA. It is the same 
domain used for the ARL GIS studies (Smith et al. 2015). 
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The southern California dataset was used for this study. There were 5 days of 
intensive observations available for data initialization and validation (Table 5). 
Four of the days were characterized by active weather events over the model 
domain; one day was characterized as quiescent, with a large ridge centered over 
the forecast area. For the purposes of this study, only data during quiescent 
conditions (9–10 February 2012) were considered. Additional simulations were 
also run for the other 4 days. We chose to concentrate on this case since the primary 
intent of this study was to examine the model’s ability to capture the development 
of the daytime CBL and transition to the nocturnal BL. Examining the CBL 
development under quiescent conditions minimizes the effects of larger synoptic-
scale weather features that can complicate and suddenly modulate the development 
of the daytime CBL. In the absence of large-scale forcing (except for subsidence), 
cloudiness, advection, and precipitation, the processes controlling the depth of the 
CBL and its growth should be highly simplified. 

Table 5 Synoptic conditions for the case study days considered 

Case Dates (2012) Description 

1 February 7–8 Upper-level front moved onshore, which led to widespread 
precipitation in the region. 

2 February 9–10 Quiescent weather was in place with a 500-hPa ridge 
centered over central California at 12 UTC. 

3 February 16–17 

An upper-level low located near the California/Arizona 
border with Mexico at 12 UTC brought precipitation to that 
portion of the domain. This pattern moved south and east 
over the course of the day. 

4 March 1–2 

A weak shortwave trough resulted in precipitation in 
northern California at the beginning of the period that spread 
to Nevada, then moved southward and decreased in 
coverage. 

5 March 5–6 Widespread high-level cloudiness due to weak upper-level 
low pressure but very limited precipitation. 

 
Case 2 was used for all of the model runs used in this analysis. The dependency 
upon synoptic conditions is examined in the ongoing Design of Experiments (DoE) 
study (Smith and Penc 2015a, 2015b; Smith et al. 2016a, 2016b; Smith et al. 2017, 
2018). The DoE study examines data from all 5 days of intensive data collection 
over 2 domains that overlap: the current study domain (centered over San Diego 
[KSAN]) and an adjacent domain centered over San Francisco, California (KSFO). 
The surface and 500-hPa maps covering the study area are shown in Figs. 7 and 8. 
The 500-hPa charts for 1200 UTC 09 February and 0000Z 10 February are shown 
in Figs. 7a (left) and 7b (right), respectively, and show ridging in place over the 
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study area, with the 500-hPa ridge axis slightly to the north of the innermost mesh, 
which is located near KSAN. 

 

    

Fig. 7 Analysis (500 hPa) for 1200Z 09 February 2012 (left) and 0000Z 10 February 2012 
(right). (Reprinted from NOAA, http://www.spc.noaa.gov/obswx/maps/) 

      

Fig. 8 Surface weather maps for 1200Z 09 February 2012 (left) and 0000Z 10 February 
2012 (right) (Reprinted from NOAA, http://www.wpc.ncep.noaa.gov /archives/web_pages/sfc 
/sfc_archive.php)  

The corresponding surface charts are shown in Figs. 8. The surface high-pressure 
center remained to the west of California during the study period, with generally 
light surface winds observed. Cloud coverage was light over the study area. 
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Synoptic analyses indicate that a light flow regime at the surface was in place 
during the study period. A time series of the observed surface wind speeds at North 
Island Naval Air Station, San Diego (KNZY; latitude 32.69°N, longitude 
117.21°W, and elevation 23 ft) is shown in Fig. 9. Prior to 2100 UTC, the surface 
winds are uniformly light at approximately 2ms–1 during the early morning through 
local noon. Winds pick up during the afternoon with the development of surface 
heating and the daytime CBL. After sunset, winds again decrease to near 2ms–1. 
For the majority of the simulation, the winds remain light. For the time period that 
the nocturnal BL is in place, winds are nearly constant and light and in the vicinity 
of 2ms–1.  

 
Fig. 9 Time series plot of the surface (2m) winds at KNZY; latitude 32.69°N, longitude 
117.21°W, and elevation 23 ft 

With quiescent conditions at play during the study period, the focus of this analysis 
was to examine the representation of the BL by the candidate schemes, with 
emphasis on capturing surface conditions during the diurnal evolution of the PBL. 
The results of this study follow in Section 5. 

5. Results 

The 7 PBL/SL parameterization combinations selected for this study are listed in 
Table 6. In each of these, the default SL scheme was coupled with the PBL scheme 
being tested because they are generally accepted and the most widely used by 
researchers. Where there was a matching SL, we used that option. For the others, 
where multiple options existed for SL choice, we used the revised MM5 SL scheme. 
That scheme is reported to work with many of the PBL options. We did not deviate 
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from the suggested configuration to limit the total number of runs, as this is 
anticipated to be the best performing combination. 

Table 6 PBL/SL combinations tested and evaluated in this study 

Case no. PBL/SL 
option PBL scheme SL scheme 

1 5 / 5 Mellor-Yamada Nakanishi and 
Niino (MYNN) 

Nakanishi and Niino PBL’s SL 
scheme 

2 11 / 1 Shin-Hong Scheme (SH) Revised MM5 SL scheme 

3 2 / 2 Mellor-Yamada-Janjic Scheme 
(MYJ) 

Eta similarity SL scheme 

4 1 / 1 Yonsei University Scheme 
(YSU) 

Revised MM5 SL scheme 

5 8 / 1 Bougeault-Lacarrère PBL 
(BouLac) 

Revised MM5 SL scheme 

6 4 / 4 Quasi-normal Scale 
Elimination (QNSE) 

QNSE PBL scheme’s SL 
option 

7 7 / 1 Asymmetric Convective Model 
(ACM2) 

Revised MM5 SL scheme 

 
Model performance was assessed using point observations and a statistical analysis 
and comparison of the model bias and root-mean-squared error (RMSE) for the 7 
PBL/SL scheme combinations tested. In addition, a number of other statistical 
measures were derived. The 6 meteorological variables analyzed in this analysis 
were temperature (T), dew point (DPT), relative humidity (RH), u component of 
the wind (u), v component of the wind (v), and wind speed. We also briefly 
examined the PBL depth, as deduced from the model output, and performed an 
analysis of the ensemble spread, which we present in the form of Talagrand 
diagrams (Hamill 2001).  

5.1 Model Bias and RMSE 

Model bias and RMSE were calculated for each of the 7 members in the ensemble. 
Statistics were calculated for each hour of the simulation, including the data 
assimilation (hours 1–6), the nowcast period (hours 7–12), and the extended 
forecast (hours 13–24). Over the model domain, these periods roughly correspond 
to morning, afternoon, and nighttime hours, respectively. This corresponds to, 
respectively, 1300 UTC 09 February 2012 through 1800 UTC 09 February (0500–
1000 Pacific Standard Time [PST]), 1900 UTC 09 February 2012 through  
0000 UTC 10 February 2012 (1100–1600 PST), and 0100 UTC 10 February 2012 
through 1200 UTC 10 February 2012 (1700–0400 PST). In addition, the overall 
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model statistics were computed (hours 1–24) and reflect the period 1300 UTC 09 
February 2012 through 1200 UTC 10 February 2012. 

We calculated the bias by taking  

 𝐵𝐵𝑖𝑖 = 𝐹𝐹𝑖𝑖 − 𝑂𝑂𝑖𝑖,  (1) 

where F and O represent the forecast and observed value, and i indicated the 
specific pair in a given run. 

We calculated the mean error or mean bias via 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  
1
𝑁𝑁
�𝐵𝐵𝑖𝑖

𝑁𝑁

𝑖𝑖=1

   (2) 

 
and the root mean square error via 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  ��𝐵𝐵𝑖𝑖2
𝑁𝑁

𝑖𝑖=1

 ,  (3) 

where N is the number of forecast observation pairs in a given run. 

All statistics were computed using the R statistical language (R Core Team 2013) 
after compiling and postprocessing all the run data using the Tidyverse set of 
packages (Wickham 2011, 2014, 2017a). We plotted the various statistics and 
parameters of interest using the R statistical language and specifically the ggplot2 
plot package (Wickham 2009, 2016, 2017b). 

5.1.1 Model Bias 

Model bias throughout the model integration is shown in Figs. 10–15. Each plot is 
labeled in terms of both UTC and PST with indicators for the times of sunrise and 
sunset. All of the analyses presented here apply to the innermost D3 (1-km) domain. 
The temperature bias is shown in Fig. 10. During the data assimilation period 
(1200–1800 UTC) all of the schemes show a small forecast bias, typically less than 
1 K. While the ACM2, BouLac, MYJ, SH, and YSU schemes perform very 
similarly, the MYNN and QNSE schemes differ from these. The latter 2 schemes 
exhibit a negative bias, meaning that they underestimate the surface temperature. 
The former schemes slightly overestimate the surface temperature at 2m for the 
hours 1400 through 1600 UTC. After hour 4 of the simulation, all of the schemes 
converge and tend toward underestimating the surface temperature.  
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Fig. 10 Model bias for surface temperature (Kelvin [K]) at 2m above ground level (AGL) 
for the 7 PBL schemes tested. The data assimilation was applied from 1200 to 1800 UTC, and 
thus 0000 UTC is the beginning of the nowcast. 

Until hour 12 of the simulation (0000 UTC), the model consistently underestimates 
the 2m surface temperature, and the negative temperature bias increases until 
approximately 0100 UTC on 10 February, when the negative bias is largest. The 
difference between the schemes is relatively small throughout the time period and 
amounts to only a couple tenths of a degree. Beyond 0100 UTC, the model bias 
reverses and overall becomes slightly positive (2m temperature is overestimated) 
during the final 4 h of the simulation, with the exception of the MYNN scheme, 
which retains a negative bias. This time period corresponds to nighttime, when a 
nocturnal BL is in place.  

The MYJ scheme has the largest positive bias in the latter portion of the forecast 
period, which occurs during nighttime. The bias exceeds 2 K for the last 4 h of the 
simulation. Since the SH scheme is based largely on the YSU scheme, they perform 
very closely throughout the forecast period, and the curves largely superimpose. 
Based on the data, we conclude that the change in behavior is likely associated with 
the transition from the daytime CBL to the nighttime and the model’s ability to 
effectively simulate both. During the daytime, the model underestimates the surface 
temperature, and at nighttime it overestimates the surface temperature, in general, 
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regardless of the scheme chosen, with the sole exception being the QNSE scheme, 
which retains a negative bias throughout the forecast cycle. 

The bias for the DPT is shown in Fig. 11. For the majority of the forecast cycle, the 
DPT (at the surface) is underestimated by the model as shown by the negative bias, 
with the exception being between 0000 and 0200 UTC (1600–1800 PST). During 
these 3 h, which occur in late afternoon leading into early evening, the DPT is 
overestimated. Throughout the simulation, there is considerably more spread 
among the individual schemes than was seen in the temperature bias.  

 
Fig. 11 Model bias for DPT (K) at 2m AGL for the 7 PBL schemes tested. The data 
assimilation was applied from 1200 to 1800 UTC, and thus 0000 UTC is the beginning of the 
nowcast. 

The reversal in the bias tendency (change of bias versus time) corresponds to late 
afternoon, when the CBL is beginning to decay and be replaced by the nocturnal 
BL and corresponds closely with local sunset. At nighttime, during the latter half 
of the simulation, the forecast DPT is again underestimated, with overall negative 
bias being shown by all of the schemes tested. All of the schemes show a large 
range in the bias (defined by subtracting the maximum and minimum biases for 
each scheme) throughout the simulation—nearly 4 K. These changes in the bias 
tendency occur when the BL transitions between daytime and nighttime regimes. 
As in the previous analysis of surface temperature, there appears to be a dependency 
between the time of day and the bias as well as the portion of the forecast cycle 
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(assimilation, nowcast, and extended forecast). Since the model is initiated at  
1200 UTC (0400 UTC) and it takes from 3 to 4 h (in our cases) for the model to 
stabilize and spin up, the transition between the stable nighttime BL and daytime 
CBL is not as clearly defined. The change in bias trend during this transition is 
likely a function of the drying and moistening of the PBL, which is controlled by 
BL processes, including entrainment and mixing into the PBL. 

The RH bias for the simulations is shown in Fig. 12. The bias is largely similar to 
that of the DPT bias shown earlier. While during data assimilation there appears to 
be some spread among the schemes, with QNSE and MYNN performing slightly 
better, all members consistently show a negative bias. The initial bias is 
approximately 7%. The RH bias becomes steadily less negative almost from the 
beginning of the model simulation and reaches zero approximately 9 h into the 
forecast (2100 UTC, 1300 PST). The RH bias then becomes increasingly positive 
through much of the remainder of the afternoon (over-forecasting the RH), with a 
maximum positive bias of 8%–10% at 0100 UTC (1700 PST), which is just before 
sunset over the model domain. Thus, the model becomes too moist (in terms of 
RH), independent of BL scheme chosen, by late afternoon over the inner domain. 

 
Fig. 12 Model bias for RH (%) at 2m AGL for the 7 PBL schemes tested. The data 
assimilation was applied from 1200 to 1800 UTC, and thus 0000 UTC is the beginning of the 
nowcast. 
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Immediately after model initialization, the bias for 5 of the schemes (ACM2, YSU, 
SH, BouLac, and MYJ) approaches –10%, while the other 2 schemes (MYNN and 
QNSE) approach a –5% bias, initially performing slightly better than the former 
schemes. After 1600 UTC (0800 PST) all 7 schemes performed approximately the 
same, with the model bias gradually and linearly approaching 0% by 2200 UTC 
(1400 PST), then the RH bias consistently increases to around 10% by 1700 UTC 
(1700 PST). While the model originally shows a negative bias, all 7 schemes are 
positively biased by mid-run. Thus, the model, regardless of scheme, produces 
surface (2m) RH that is consistently too high in late afternoon and early evening. 
After 0100 UTC, or 1700 PST locally, the model bias uniformly decreases 
throughout the remainder of the simulation. After 0400 UTC (2000 UTC) the model 
bias again becomes negative, corresponding to the onset of evening and nighttime 
over the model domain. As in the temperature analysis, the various schemes begin 
to diverge toward the end of the simulation (nighttime). The divergence in bias 
post-0400 UTC (2000 UTC) shows the MYNN scheme to be the best performer at 
approximately –9% RH bias, with the extremes being –14% bias (QNSE) and  
–18% bias (MYJ). The other schemes (ACM2, SH, BouLac, and YSU) are middle 
performers averaging close to –10% RH bias toward the end of the simulation. The 
model-produced RH is consistently too low at nighttime over the model domain. 
Interestingly, the peak in positive model bias around 0100 UTC corresponds closely 
to the peak in the negative temperature bias (Fig. 10). Since RH is a function of 
both temperature and moisture, this is not surprising. 

The spread among ensemble members in the RH bias is largest toward the end of 
the simulation, which occurs in the early morning hours. This enhancement in the 
spread among the members is noted in all of the preceding bias analyses. 

Figures 13–16 show the bias for the surface wind (at 10m AGL) data. The analyses 
are broken down into the east–west (u) component, north–south (v) component, and 
the wind speed. The individual components of the wind can be used to derive both 
a speed and direction, both of which can be in error. Errors in one or both of the 
individual components can be translated to directional errors, while the speed 
variable (WIND) translates to errors in the wind velocity. While the wind speed 
may be correct, the individual components may both be in error yet contribute to 
an apparent “correct” speed. In this case, the direction is in error but not in speed.  

Figure 13 shows the bias for the u component of the wind. The mean bias for all 7 
tested schemes does not differ significantly during the data assimilation part of the 
simulations, extending through about 0900 PST (1700 UTC). The initial mean bias 
of –1 ms–1 goes from negative to positive within 4 h of model initialization, then the 
ensemble mean approaches zero by the middle period of the simulation. The QNSE 
and MYJ schemes overshoot the ensemble mean between 1800 and 0000 UTC, then 



 

Approved for public release; distribution is unlimited 
38 

settle with the remainder of the members through the end of the simulation. After 
the end of data assimilation (i.e., after 1800 UTC), during the nowcast period, the 
bias associated with each of the schemes varies the most. The bias from the other 5 
schemes tested did not differ significantly from each other and averaged a near zero 
forecast bias. Past 0000 UTC (1600 PST), the bias values from all of the schemes 
behaved quite differently. The smallest bias error was associated with the MYNN 
scheme, followed by the ACM2 and MYJ schemes.  

 
Fig. 13 Model bias for u component of wind (ms–1) at 10m AGL for the 7 PBL schemes 
tested. The data assimilation was applied from 1200 to 1800 UTC, and thus 0000 UTC is the 
beginning of the nowcast. 

As in the previous analyses, the bias results varied with the stage of the model run. 
Again, note that the extended forecast represents the daytime period over the study 
domain. The largest temporal change in the bias occurred during the model data 
assimilation phase, when the model was being adjusted to the observations. After 
this period, the model bias was steadier, with a shift around sunrise. The largest 
underestimate of the u component of the wind occurred right after model 
initialization, around 2 ms–1. The relatively small magnitude of the bias error at 
later times must be viewed in context of the light surface winds and the ridging 
present over the model domain. Interestingly, the mean bias of the ensemble for the 
nowcast and the extended forecast is approximately zero. 
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The v component bias is shown in Fig. 14. As in the previous analysis, there is little 
difference between the individual PBL schemes during the earlier part of the 
simulation. The largest deviation between the schemes occurs during the latter half 
of the simulations. The better schemes in this case appear to be YSU, SH, and MYJ, 
which present the smallest biases of the 7 members analyzed. The worst performers 
are ACM2 and QNSE, at least when the v component of wind is considered. All of 
the schemes did give relatively small biases of less than 0.5 ms–1, but keep in mind 
that the surface winds were light during most of this period. The largest model 
biases occurred during data assimilation (bias underestimates >0.5 ms–1) and the 
earlier part of the nowcast period, with bias errors approaching 0.7–1 ms–1 around 
8 h into the simulation. The latter time period corresponds to afternoon over the 
model domain. Except for the preforecast and nowcast periods near the beginning 
of the runs, the model ensemble does not appear to have a strong positive or 
negative bias. The mean bias of the ensemble is approximately zero for the latter 
half of the simulation time. 

 
Fig. 14 Model bias for wind u component (ms–1) at 10m AGL for the 7 PBL schemes tested. 
The data assimilation was applied from 1200 to 1800 UTC, and thus 0000 UTC is the beginning 
of the nowcast. 

When we consider the surface wind speed (Fig. 15) bias we again see the different 
behavior in the bias for the 3 periods: assimilation, nowcast, and extended forecast. 
The model overestimates the surface wind during data assimilation by as much as 
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2 ms–1 but then quickly settles down to near zero bias by 4 h into the simulation. 
There is more spread in the model bias by the time the nowcast period is 
approaching, with the greatest bias occurring with the QNSE scheme. QNSE 
overestimates the wind speed by >1 ms–1 from hours 9–10 of the simulation. In 
contrast, the ACM2 scheme underestimates the wind by as much as 1 ms–1 around 
8 h into the simulation. As in all of the previous bias analyses, the model bias 
contrast between the 7 schemes is most pronounced for the latter half of the 
simulation time. For wind speed bias, the best performers at nighttime are YSU, 
SH, and ACM2, with near zero bias for the extended forecast period. The worst 
performer for the extended forecast is QNSE, followed by MYJ, with a mean bias 
error of approximately 1 ms–1, meaning that the model with these schemes 
overestimated the surface wind by this amount. Again, we must keep in mind that 
the observed surface winds were light in this case, with surface ridging over the 
model domain. Note that the physics differences appear to be most pronounced 
during nighttime. Examination of the 6 meteorological variables is consistent in 
this regard, at least for this study period. 

 
Fig. 15 Model bias for wind velocity (ms–1) at 10m AGL for the 7 PBL schemes tested. The 
data assimilation was applied from 1200 to 1800 UTC, and thus 0000 UTC is the beginning 
of the nowcast. 

In summary, these analyses show that consistently the model performance exhibits 
3 distinct regimes. Those include data assimilation (0–6 h), the nowcast period  
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(6–12 h into the simulation), and the “extended” forecast. The differences in model 
bias between the schemes are very different in each regime. Initially, the various 
schemes show very little difference. During the nowcast period, after data 
assimilation is complete, there is considerable increase in the spread of the 
ensemble members. During the extended forecast period (12–24 h), the behavior is 
again quite different. The largest spread between members occurs during the latter 
part of the simulation. The best performing BL/SL combination is a function of the 
meteorological variable we select, the time of day, and the period we are examining 
(assimilation, nowcast, and extended forecast). 

5.1.2 Model RMSE 

Similar to the model bias analysis in the previous section, we also performed an 
analysis of the model RMSE. The surface (2m) temperature RMSE of each of the 
ensemble members is shown in Fig. 16. The RMSE of the members averages 
approximately 2.6 K at the beginning of the simulation time. The MYNN scheme 
shows the largest RMSE for the initial 4 h while QNSE shows the lowest. After  
3 h of simulation time, the RMSE decreases to around 2 K for all of the members. 
For the nowcast period (6–12 h simulation time), the RMSE increases fairly linearly 
from about 1.5 to 3.5 K, with the highest RMSE associated with the MYNN and 
QNSE schemes. After 15 h, the RMSE of the members typically varies from 2.5 to 
3.5 K. BouLac, ACM2, SH, and YSU follow each other closely toward the ending 
hours of the simulation in the extended forecast. Since SH is based on YSU, the 
similarity between these 2 schemes is not unexpected. The closeness of these 
schemes reflects the similarity in the formulation of the physics for the nighttime 
case, and these times reflect the nighttime scenario over the model domain. The 
increase of RMSE toward the end of the simulation is not unexpected since the 
errors tend to accumulate the further a forecast progresses in time from the point of 
initialization. 
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Fig. 16 Model RMSE for surface temperature (K) at 2m AGL for the 7 PBL schemes tested. 
The data assimilation was applied from 1200 to 1800 UTC, and thus 0000 UTC is the beginning 
of the nowcast. 

Figure 17 shows the DPT RMSE for each of the schemes tested. The RMSE is 
rather large, reflecting model errors in the humidity and the temperature 
collectively. The mean RMSE at the point of initialization is approximately 3.3 K, 
which is significant. As data assimilation progresses, the RMSE increases to 
approximately 3.8 K, with an increased spread among the schemes tested. During 
the nowcast period (6–12 h into the simulations), the RMSE decreases from 
approximately 4.0 to 2.5 K. This corresponds to the time the daytime CBL is 
developing, and by late afternoon (1600–1800 PST) the RMSE is at the lowest point 
of the first half of the simulation. At the point in time that the nighttime BL is 
developing, early to late evening, the RMSE further decreases, with the mean 
RMSE falling to nearly 2.0 K averaged over all schemes. From midnight to early 
morning, the RMSE then increases for the model members from approximately 2.0 
to 3.5 K. There is little spread among the model members, with no scheme 
performing notably better than any of the others. The most notable spread among 
the model members occurs during the early part of the nowcast period. MYJ, 
QNSE, and BouLac perform the best during this time with the lowest RMSE of all 
the members. MYNN and ACM2 have the highest RMSE of the 7 members during 
the period extending from the end of data assimilation through the early part of the 
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6-h nowcast period. With respect to the DPT RMSE, there is overall no clearly 
superior scheme to choose from. 

 

Fig. 17 Model RMSE for DPT (K) at 2m AGL for the 7 PBL schemes tested. The data 
assimilation was applied from 1200 to 1800 UTC, and thus 0000 UTC is the beginning of the 
nowcast. 

Figure 18 shows the RH RMSE distribution for the 7 PBL/SL schemes we tested. 
After model initialization, 5 of the schemes (ACM2, YSU, SH, BouLac, and MYJ) 
edge toward approximately 17% RMSE, while the other 2 schemes (MYNN and 
QNSE) approach 15% RMSE and initially perform slightly better. Between the  
4- and 6-h simulation time (data assimilation) all 7 schemes performed similarly. 
The model RMSE gradually and linearly approached 5%–7% RH RMSE, reaching 
a minimum RMSE by hours 10 to 11. Beginning at hour 11, the RMSE then begins 
a near monotonic increase to the end of the simulation (the notable exception being 
a spike in RMSE at 1700 PST) coincident with the timing of the collapse of the 
daytime PBL. Around simulation hour 9, the individual schemes begin to show 
some divergence in the RMSE with respect to the other schemes tested. At the onset 
of this latter period, the MYNN and QNSE schemes performed slightly better than 
the others; however, for the majority of the latter half of the simulation these 2 
schemes were among the better performers. The MYJ scheme performed least well 
among the 7 toward the end of the simulation, with RMSE exceeding 20% RH. The 
MYNN scheme performed the best of the selections, with RMSE around 15% RH 
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toward the end when RMSE is maximum. In the middle of the pack, ACM2, SH, 
YSU, QNSE, and MYNN produced RMSE values that maximized at about 17% 
RH at the end of the simulation. 

 
Fig. 18 Model RMSE for RH (%) at 2m AGL for the 7 PBL schemes tested. The data 
assimilation was applied from 1200 to 1800 UTC, and thus 0000 UTC is the beginning of the 
nowcast. 

As in the previous analyses, the relative performance of each scheme, in terms of 
the percent-RH RMSE here, is dependent upon the phase of the forecast cycle and 
thus the time of day over the model domain. The RMSE decreases during the 
daytime part of the simulation and increases as nighttime progresses. This is 
consistent with our other findings.  

Figures 19–21 show the RMSE for the horizontal wind components and the wind 
speed. The u component results are shown in Fig. 19. The largest RMSE occurs 
near the beginning of the simulation during data assimilation for all of the schemes. 
The RMSE approaches 3 ms–1 at hour 1 and then decreases rapidly for the 
remainder of the data assimilation period, reaching approximately 1.5 ms–1 by  
hour 5. The RMSE then diverges for the individual members, increasing for both 
QNSE and MYJ, and decreasing for the others (BouLac, ACM2, SH, YSU, and 
QNSE) by the midpoint of the simulation. At that point, the RMSE is approximately 
1.5 ms–1 for each of the members. This time corresponds to late afternoon over the 



 

Approved for public release; distribution is unlimited 
45 

domain. After the midpoint of the simulation, nighttime is settling over the domain, 
and the individual schemes show more spread. The RMSE for QNSE is highest, at 
approximately 1.9 ms–1, followed by MYJ and MYNN. The remaining schemes 
were closely packed and had a mean RMSE of less than 1.5 ms–1. Thus, the SH, 
YSU, BouLac, and ACM2 schemes performed slightly better for the nighttime 
portion of the simulation.  

 

Fig. 19 Model RMSE for u component of wind (ms–1) at 10m AGL for the 7 PBL schemes 
tested. The data assimilation was applied from 1200 to 1800 UTC, and thus 0000 UTC is the 
beginning of the nowcast. 

The v component RMSE is shown in Fig. 20. All 7 schemes tested showed an 
immediate jump in RMSE at the beginning of the simulation, with the RMSE 
decreasing after hour 3 toward the end of data assimilation. BouLac performs 
slightly better than the others when RMSE is the measure. At hour 6, the end of 
data assimilation, the RMSE averages approximately 1.7 ms–1 for the members. 
The RMSE generally continues to decrease at this point in the simulation, with 
some divergence among members. From hours 6–12, QNSE shows a slightly higher 
RMSE than the others. BouLac, SH, and YSU perform the best in this regard. Up 
until hour 17, all of the schemes show a slight decrease in the RMSE. After 17-h 
simulation time, the RMSE remains approximately steady at approximately 1.4 to 
1.5 ms–1. There is a slight preference toward using the MYJ and SH schemes, in 
terms of lesser RMSE over the innermost model domain, while QNSE shows a 
slightly larger RMSE than the other members. 
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Fig. 20 Model RMSE for v component of wind (ms–1) at 10m AGL for the 7 PBL schemes 
tested. The data assimilation was applied from 1200 to 1800 UTC, and thus 0000 UTC is the 
beginning of the nowcast. 

The wind speed RMSE for the 7 schemes is shown in Fig. 21. At model 
initialization, the RMSE is 1.6 ms–1. RMSE then increases to over 3 ms–1 in the first 
simulation hour, then settles to about 2.5 ms–1 the next hour. The RMSE continues 
to decrease for the next 5 h to around 1.5 ms–1 where it remains for the remainder 
of the model simulation time. There is little difference between the individual 
schemes during the first 5 h. After that, the spread between individual BL schemes 
increases. During the nowcast period, which corresponds to daytime, the QNSE 
scheme shows the greatest RMSE, followed by BouLac and MYJ. The remaining 
schemes (YSU, SH, YSU, and MYNN) have the lowest RMSE. The latter half of 
the simulation time, during the formation and maintenance of the nighttime BL, 
shows the greatest spread. MYJ, SH, BouLac, and ACM2, show the least RMSE, 
ranging from 1.2 to 1.5 ms–1. The greatest variation between schemes occurs during 
the nighttime, when the nighttime-specific formulations are active. This again is 
consistent with the analyses of temperature and RH errors presented earlier. 
Differences between the various BL/SL formulations appear to be greater at 
nighttime rather than daytime.  
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Fig. 21 Model RMSE for wind velocity (ms–1) at 10m AGL for the 7 PBL schemes tested. 
The data assimilation was applied from 1200 to 1800 UTC, and thus 0000 UTC is the beginning 
of the nowcast. 

As in the earlier figures, the relatively high errors are in association with model 
spin up, which takes approximately 3 h to achieve. At that point, the model error is 
quite stable, more or less predictable, and dependent not only on the scheme used, 
but on the time of day that the BL scheme is parameterized to represent. All of the 
analyses suggest that the largest differences between schemes occur within the 
nocturnal BL rather than the daytime CBL. This finding is consistent among all of 
the meteorological variables examined (T, DPT, RH, u component, v component, 
and wind speed).  

5.1.3 Summary Statistics 

Summary statistics of the mean bias and RMSE for the 6 meteorological variables 
were calculated for the BL/SL scheme combinations that we tested. Because the 
previous analyses showed that the performance of each scheme was highly 
correlated to the period of time in the simulation (i.e., data assimilation, nowcast, 
and extended forecast) and the time of day, these statistics were compiled for each 
of those time categories for comparison purposes. The data assimilation period 
coincides with the predawn to early morning transition, the nowcast to the 
development of the daytime CBL, and the extended forecast period to the decay of 
the daytime CBL and development of a nocturnal BL.  
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Table 7 shows the results of this analysis for the data assimilation phase of the 
forecast cycle, which runs from predawn to late morning. The best performers are 
colored red. The QNSE scheme is the best performer, as determined by the number 
of statistics (4) in which the scheme performed the best (bias and RMSE for each 
variable). The next best performers are the BouLac (3 statistics), SH, and ACM2 
schemes (each with 2). In a modeling scenario, the best choice as to BL/SL scheme 
would be made depending on what variables are deemed to be to most important to 
the end user. Differences between each scheme are typically small, so there is a 
degree of flexibility in the selection process. There are no clearly outstanding 
performers in any of the categories we defined. Since this time period is the 
preforecast time period during which data assimilation is applied, the verification 
does not provide insight on the relative quality of the actual forecasts among the 
ensemble members. The preforecast time period corresponds to the latter few hours 
of the nocturnal BL and the earlier hours of the development of the daytime CBL.  

Table 7 Mean bias and RMSE for 1-km ensemble members (D3) (1 km) for 1200 UTC  
9 February through 1800 UTC 9 February (data assimilation, 0–6 h) 

Bias/RMSE MYNN SH MYJ YSU BOU QNSE ACM2 

T –0.82/2.50 0.04/2.30 0.10/2.21 0.04/2.31 0.05/2.31 –0.37/2.15 0.14/2.31 

DPT –2.45/3.85 –2.60/3.84 –2.15/3.59 –2.60/3.84 –2.39/3.74 –2.05/3.53 –2.76/3.94 

RH –5.10/12.8 –7.59/13.6 –6.62/13.3 –7.60/13.6 –7.06/13.5 –5.30/12.6 –8.10/13.9 

u comp –0.65/2.10 –0.50/2.07 –0.70/2.15 –0.51/2.08 –0.56/2.08 –0.68/2.11 –0.55/2.07 

v comp –0.36/2.15 –0.32/2.11 –0.39/2.21 –0.32/2.11 –0.29/2.00 –0.35/2.17 –0.33/2.10 

Wind 1.06/2.25 0.94/2.16 1.18/2.33 0.94/2.16 0.89/2.15 1.17/2.30 0.98/2.15 

 
The nowcast period (daytime CBL) results are shown in Table 8 and appear notably 
different than those of the initial period. The best overall performing schemes are 
the MYJ and BouLac schemes with 4 top performing statistics. ACM2, MYNN, 
SH, and YSU are each superior with only a single statistic. With respect to 
temperature, MYJ is clearly superior with a bias of –1.65 K and an RMSE of  
2.18 K. The remaining comparisons are relatively close. 
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Table 8 Mean bias and RMSE for 1-km ensemble members (D3) (1 km) for 1800 UTC  
9 February through 0000 UTC 10 February (nowcast period, 6–12 h) 

Bias/RMSE MYNN SH MYJ YSU BOU QNSE ACM2 

T –2.14/2.66 –2.11/2.58 –1.65/2.18 –2.09/2.56 –1.74/2.28 –1.89/2.35 –1.87/2.39 

DPT –1.44/3.42 –1.52/3.42 –0.71/3.31 –1.50/3.41 –1.33/3.30 –0.89/3.30 –2.08/3.53 

RH 0.96/6.14 0.68/5.84 1.48/6.34 0.66/5.80 0.48/5.64 1.61/6.52 –0.63/5.45 

u comp 0.16/1.61 0.07/1.58 0.62/1.88 0.05/1.57 –0.17/1.55 0.98/2.15 0.06/1.59 

v comp 0.42/1.78 0.46/1.75 0.39/1.84 0.44/1.73 0.40/1.71 0.52/1.94 0.45/1.74 

Wind –0.10/1.41 –0.21/1.40 0.46/1.55 –0.24/1.40 –0.52/1.50 0.89/1.72 –0.18/1.40 

 
Model performance with respect to bias and RMSE is fairly evenly distributed for 
the extended forecast period (0000–1200 UTC), which represents nighttime 
conditions over the model domain (Table 9). Only the ACM2 scheme does not have 
a top performing statistic for these times. Both the MYNN and SH schemes have 3 
top performing statistics. YSU and QNSE are each superior with 2 statistics. MYJ 
and BouLac are superior for only a single statistic. Aside from RH where MYNN 
is the superior scheme, the differences between the various BL/SL formulations is 
relatively small and typically amount to a few tenths at most.  

Table 9 Mean bias and RMSE for 1-km ensemble members (D3) (1 km) for 0000 UTC  
10 February through 1200 UTC 10 February (extended forecast, 12–24 h) 

Bias/RMSE MYNN SH MYJ YSU BOU QNSE ACM2 

T –1.39/3.23 0.30/2.88 1.01/3.06 0.29/2.87 0.41/2.88 –0.31/2.82 0.30/2.88 

DPT –1.33/2.77 –1.19/2.86 –1.49/2.71 –1.11/2.85 –0.94/2.71 –1.38/2.68 –1.30/2.82 

RH –1.26/13.7 –5.20/14.5 –8.38/15.6 –4.87/14.4 –4.78/13.9 –4.78/14.4 –5.64/14.3 

u comp 0.07/1.51 0.42/1.34 –0.26/1.58 0.44/1.35 0.42/1.41 –0.65/1.73 0.29/1.40 

v comp 0.06/1.49 0.08/1.41 -0.04/1.51 0.08/1.42 0.10/1.46 –0.11/1.56 0.14/1.45 

Wind 0.51/1.55 0.20/1.32 0.68/1.60 0.20/1.32 0.34/1.38 0.93/1.74 0.32/1.34 

 
In a similar manner, statistics were compiled for the time of the entire forecast 
cycle. Those results are summarized in Table 10. For the combined nowcast and 
extended forecast period, the SH scheme excelled in 4 measures, all of which are 
wind measures, followed by MYNN with 3 statistics, excelling mainly with the RH 
bias and RMSE measures. YSU and QNSE beat out the others in 2 statistics each 
and share best performance with temperature. BOU and MYJ came out on top with 
a single measure apiece. Despite this, the individual differences between the various 
schemes in terms of performance are relatively small except in isolated cases. While 
both the MYNN and MYJ temperature bias exceed 1 K, the others are typically a 
few tenths of a degree. The differences between the temperature RMSE ranges from 
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0.3 to 0.4 K for the other 5 schemes. While this might eliminate MYNN for 
consideration if we are mainly interested in surface temperature forecasts, no 
particular scheme would be out of contention for modeling any of the other 
variables, where they are the primary forecast variables of concern. 

Table 10 Mean bias and RMSE for 1-km ensemble members (D3) (1 km) for 1200 UTC  
9 February through 1200 UTC 10 February (complete forecast, 6–24 h)  

Bias/RMSE MYNN SH MYJ YSU BOU QNSE ACM2 

T –1.64/3.04 –0.50/2.78 0.12/2.77 –0.50/2.77 –0.31/2.68 –0.84/2.66 –0.42/2.71 

DPT –1.37/2.99 –1.30/3.05 –1.23/2.91 –1.24/3.03 –1.06/2.90 –1.21/2.89 –1.56/3.05 

RH –0.52/11.2 –3.23/11.6 –5.09/12.5 –3.03/11.6 –3.03/11.2 –2.65/11.8 –3.97/11.4 

u comp 0.10/1.54 0.30/1.42 0.03/1.68 0.31/1.42 0.22/1.46 –0.11/1.87 0.22/1.46 

v comp 0.18/1.58 0.20/1.53 0.10/1.62 0.20/1.52 0.20/1.54 0.10/1.69 0.25/1.55 

Wind 0.31/1.51 0.07/1.35 0.61/1.59 0.06/1.35 0.05/1.42 0.92/1.73 0.15/1.38 

 
Depending on the time period of interest, the time of day, and the primary 
meteorological variable(s) of primary concern to the end user, an individual scheme 
can be chosen to minimize the error(s) of primary interest. If we are primarily 
interested in surface wind forecasts, the SH scheme would be preferable. However, 
in most cases the differences between each scheme are typically very small. Except 
in clear cases of under-performance in a particular scheme or schemes (for example, 
the MYNN scheme for temperature during an entire 24-h cycle), any of the other 
schemes remain candidates for inclusion in a preconfigured modeling system 
deployed in the battlefield without a priori knowledge of the location of 
deployment, and the time of the simulation. 

The statistics shown in our analyses do not define a single superior scheme; rather, 
the analyses show that the best overall scheme is a function of time of day and of 
the meteorological variable of interest. The standard measures of forecast quality 
(RMSE and bias) commonly vary insignificantly between the schemes tested. To 
choose the best overall scheme, we assigned rankings (from 1 through 7) for each 
of the 3 independent variables (T, DPT, and wind) and averaged the rankings for 
the nowcast, extended forecast, and complete forecast periods. The data 
assimilation period is not included in this analysis. Furthermore, since the bias 
calculation potentially includes large swings in the error that may be offset by one 
in the other direction, we chose to evaluate the overall relative performance of the 
schemes using only the RMSE.  

The results of this determination are shown in Table 11. The mean RMSE and the 
standard deviation of the RMSE for the 7 schemes tested are shown. In addition, 
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the rankings for T, DPT, and wind speed are shown. To obtain a representative 
ranking that does not over account for wind, we eliminated the u and v components 
and RH from our analysis. Each scheme is ranked 1–7 for the nowcast, extended 
forecast, and complete forecast periods. 

Table 11 Summary RMSE statistics (mean and standard deviation) and relative ranking of 
each of the PBL scheme configurations we tested for the nowcast, extended forecast, and total 
forecast periods. Overall ranking for each scheme (COMP) is a composite of T, DPT, and wind 
speed rankings. Temperature and DPT units are in Kelvin and wind speed in ms–1. 

 

For the nowcast period, corresponding to daytime, the BouLac scheme performs 
best. For the extended forecast, corresponding to nighttime, YSU, BouLac, and 
QNSE tied for best performance. Overall, for the entire forecast period, BouLac 
performs best for our data. The ensemble mean RMSE for temperature varies 
between 2.4 and 3.0 K for our data. The DPT RMSE is slightly larger and ranges 
from 2.8 to 3.4 K. The mean RMSE for wind velocity is nearly constant at 
approximately 1.5 ms–1. Note that the standard deviation of the RMSE is quite 
small, indicative of the lack of spread between the various PBL schemes we tested.  

All of the results presented thus far have focused on the model statistics derived 
from the innermost 1-km grid domain since it is the domain of primary interest. 
Since the 1-km domain resides entirely within the 3-km middle domain, we were 
interested in what additional accuracy we might obtain by using such a fine-scale 
grid over the coarser 3-km grid. Table 12 shows a comparison of the RMSE and 
bias over the 1- and 3-km grids for a single meteorological variable, temperature. 
The data included for the 3-km domain are restricted to those points that are 
members of the 1-km domain only. This table shows values for a single time in the 
nowcast period of the simulation; namely, 0000 UTC (1600 PST) on 10 February 
(the 6-h forecast). All bias and RMSE estimates were close for both the grid spacing 
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and for the individual BL/SL schemes within a couple tenths of a degree Kelvin. 
At nighttime, before sunrise, the model underestimates the surface temperature by 
about 2 K. Curiously, when we look at grid spacing, the coarser 3-km resolution 
grid produces very slightly better results. However, the improvement is small both 
with regard to the model bias and RMSE. This may or may not be statistically 
significant and may be related to geolocation errors, the limitations of a grid-to-
point verification method, or other interpolation assumptions used when 
interpolating the model data to the observation locations.  

Table 12 Temperature bias (2m AGL) and RMSE for 1- and 3-km ensemble members 
(D3/D2) (1 km/3 km) validation time: 0000 UTC on 10 February (12-h simulation time, and  
6-h lead time) 

Error stat MYNN SH MYJ YSU BOU QNSE ACM2 

Bias –2.31/–2.21 –2.32/–2.26 –2.34/–2.34 –2.29/–2.25 –1.99/–1.97 –2.61/–2.62 –2.11/–2.09 

RMSE 2.78/2.57 2.74/2.60 2.68/2.66 2.72/2.60 2.46/2.34 2.91/2.90 2.57/2.46 

While the 3-km grid very slightly appears to be better, it may not necessarily 
indicative of an increase of performance with the coarser grid. Further studies may 
be deemed necessary, but that is beyond the scope of this report.  

5.2 Talagrand Diagrams 

To provide an estimate of the utility of the 7 member PBL/SL scheme combinations 
for producing a valid ensemble that could provide useful model statistics and 
quantification, Talagrand diagrams (Hamill 2001; Wilks 2011), also known as rank 
histograms, were produced for this study. The shape and distributions shown by 
these diagrams represent a measure of the validity of an ensemble of forecasts and 
tell us about the relationship of the forecasts to the observed data. This information 
includes model bias and error and the spread of the set of forecasts. Essentially, the 
“ranks” represent the position within the ensemble where the observed value is 
positioned. So a rank of 3 would indicate that the observed value is in position 3 of 
the ensemble members (sandwiched in between ensemble members 2 and 3), and 
so forth. A rank of 8 would indicate that the observed value occurs after all 7 
members of this ensemble. So in this case all 7 members produce values that are 
lower than the observed value. It is clear, then, that all of the ensemble members 
are under-forecasting the value. Rank histograms were produced from the T, DPT, 
RH, wind speed, and u and v component fields output from WRF and supplied to 
the MET package for this analysis. 
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The results of this analysis for 00Z 10 February are shown in Figs. 22–27. The  
2m temperature histogram is shown in Fig. 22. Very few data are represented in 
bins 1–7, and a majority of the measurements occur in bin 8. This type of plot is 
produced when the observed value is higher than nearly all of the ensemble 
forecasts. Thus, in our case, the model is underestimating the surface temperature 
at 00Z, which is late afternoon in southern California. Since very little data appear 
in the other bins, the WRF model consistently underestimates the late afternoon 
surface temperatures for the 7 PBL/SL schemes considered in this analysis. The 
observed temperature is consistently higher than the ensemble members and 
independent of which scheme we choose for the PBL/SL physics. 

 
Fig. 22 WRF D3 (1-km) ensemble rank histogram produced for 00Z 10 February 2012, 
surface (2m) temperature 

The Talagrand diagram for DPT (Fig. 23) is notably different. In this case we obtain 
a classic U-shaped plot, which is produced when there are a sufficient number of 
low and high biases but the individual members do not spread out enough to provide 
an adequate statistical measure of spread within the ensemble. Although there is 
some spread in the ensemble members, the spread is small, resulting in relatively 
few samples in the intermediate bins and a majority lying at the extreme bins. While 
this represents an improvement in the quality of the spread produced by the 
ensemble, it remains inadequate, as the idealized plot would be relatively flat 
through all 8 bins (7 members plus the observations). 
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Fig. 23 WRF D3 (1-km) ensemble rank histogram produced for 00Z 10 February 2012, 
surface (2m) DPT 

Similar results were obtained when we looked at the RH (Fig. 24),  
u component (Fig. 25), v component (Fig. 26), and wind velocity (Fig. 26). The RH 
Talagrand diagram also indicates that the model is biased high, at least at 00Z. This 
is physically consistent with the model bias toward underestimating the surface 
temperature, as we have seen earlier. The wind components and the velocity rank 
histograms also show that the model errors are widely spread.  

 

Fig. 24 WRF D3 (1-km) ensemble rank histogram produced for 00Z 10 February 2012, 2m 
(surface) RH 



 

Approved for public release; distribution is unlimited 
55 

 

Fig. 25 WRF D3 (1-km) ensemble rank histogram produced for 00Z 10 February 2012, 10m 
u component of wind 

 

Fig. 26 WRF D3 (1-km) ensemble rank histogram produced for 00Z 10 February 2012, 10m 
v component of wind 
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Fig. 27 WRF D3 (1-km) ensemble rank histogram produced for 00Z 10 February 2012, 10m 
wind speed 

The characteristic U-shaped patterns are consistent with an ensemble whose 
members do not have sufficient spread, contain a mixture of low and high biases, 
and it indicates that the use of PBL/SL schemes alone does not constitute a “good 
ensemble”. A “good ensemble” has sufficient spread among its members such that 
the distribution is within the envelope of expected values for a given probability 
distribution defined by the validation observation(s). While we have shown only 
the results from the 00Z analysis, analyses from other times in this run set are 
similar. Therefore, we conclude that using an ensemble based solely on the choice 
of PBL/SL scheme combination, is, in itself, insufficient in creating a valid 
ensemble for the purpose of nowcasting with this version of WRF, and the current 
dataset (i.e., a single case day), geography, and synoptic conditions.  

5.3 Horizontal Variation in Surface (2m) Temperature 

The interior domain used in this modeling study contains a large variation in surface 
terrain, vegetation, land use, and elevation. Furthermore, there is a wide variation 
in climatic regimes since part of the domain is under the influence of maritime flow 
from over the ocean as well as arid or semi-arid inland locations. While the western 
extent of the domain is located at or near sea level, there are significant elevated 
regions to the east with mountainous terrain.  

The terrain and elevation of the 1-km domain are shown in Fig. 28, along with the 
locations of most of the persistent weather observations used to validate the model 
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data for this study. Note that the only observations used in this study are those that 
persist throughout the entire time of integration. The elevation varies from below 
sea level to over 3 km, reflecting the complex terrain and the associated complex 
flow fields associated with this type of elevation variation over a short distance. 
The elevation varies nonlinearly and roughly west (low) to east (high). In addition, 
there is a high degree of small-scale structure, which necessitates the use of finer-
resolution grids to resolve local flows. With a 1-km grid in the inner nest, this 
translates to the ability to resolve approximately 5-km-scale phenomena. With 
some of the topographic features smaller than 5 km, the model is inherently 
incapable of resolving them all, and this introduces some additional degree of 
model uncertainty, as we would be unable to represent the smallest scales of motion 
using this model resolution. Because of the limited computational resources in a 
field-deployed modeling system, we needed to effect a compromise between the 
need to resolve finer-scale meteorological phenomena and the limited resources 
available in the forward-deployed environment. While we were not as restricted in 
this study, we wanted to mimic the resources present in the typical battlefield 
deployment the best we could.  

 

Fig. 28 Terrain and location of the weather stations that contain persistent data for a related 
study over the innermost domain (1-km grid) created from a US Geological Survey digital 
elevation model with a resolution of 1/3 arc-second (Smith et al. 2015). A subset of these 
observations is used based on persistence through model integration. 
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The mean 2m surface temperature and terrain height across the inner domain at 
0000 UTC 10 February is shown in Fig. 29. The mean value is taken by averaging 
paired observations over the 7 members of the ensemble. As expected, the highest 
temperatures are found at the lower elevations with the exception of the region 
immediately surrounding the coastline. The interior lowlands have the highest 
temperature. Conversely, the coolest temperatures are found at the higher 
elevations. Over the domain, the elevations range from sea level to well over  
1500 m. Thus, there is a direct correlation between the elevation and surface 
temperature. Over such a limited domain, there is little relationship between 
temperature and latitude. A secondary area of temperature maximum lies to the lee 
of the mountains at the eastern extremity of the model domain.  

 

Fig. 29 Ensemble mean surface (2m AGL) temperature (Kelvin) over the innermost model 
domain (D3, 1-km grid) at 0000 UTC 10 February 2012 

The cooler temperatures near the coastline are a reflection of the relatively cool 
waters of the eastern Pacific and the marine BL. These temperatures are not as cool 
as those associated with the higher terrain. The range in surface (2m) temperature 
extends from approximately 281 to 297 K.  
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The ensemble maximum at 0000 UTC 10 February is plotted in Fig. 30. Here the 
range extends from approximately 284 to 298 K. The difference between the mean 
and maximum values within the members is approximately 2 K. This does not 
represent a large spread in the values compared with the ensemble mean. The same 
relationships exist that were found for the plot of the means over the model domain. 
There are no notable deviations from the previous analysis of the ensemble mean 
values. However, the lowest ensemble maximum in the 0000 UTC temperature 
forecast occurs leeward of the mountains toward the eastern edge of the model 
domain, so the mean surface temperature and maximum surface temperature are 
more comparable across this part of the domain. 

 

Fig. 30 Ensemble maximum surface (2m AGL) temperature (Kelvin) over the innermost 
model domain (D3, 1-km grid) at 0000 UTC 10 February 2012 

The ensemble minimum surface temperature at 0000 UTC 10 February is plotted 
in Fig. 31. The range extends from approximately 277 to 297 K. The primary 
difference between this field and the mean is that the warmer temperatures extend 
closer to the coastline. The other features are largely consistent with the previous 
plots. The largest horizontal variation in the ensemble minima occurs near Point 
Loma, which is a peninsula surrounding San Diego Bay with an area of 
approximately 18 km2. This is an area where it is difficult for the model to resolve 
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small-scale flow associated with the geographic feature since convergent and/or 
divergent flows can be triggered by the geography. As in the earlier plots, the 
boundary issues become apparent over land to the northern, eastern, and southern 
edges of the domain. 

 

Fig. 31 Ensemble minimum surface (2m AGL) temperature (Kelvin) over the innermost 
model domain (D3, 1-km grid) at 0000 UTC 10 February 2012 

Figure 32 shows the ensemble range over the innermost (1-km) grid at 0000 UTC 
10 February. Most of the variability between ensemble members occurs in the range 
from 0.1 K to a few tenths of a degree Kelvin. Very little variation occurs between 
ensemble members both at inland locations and over the Pacific Ocean, which is 
consistent with previous analyses (Smith et al. 2015, 2016a,b) showing very limited 
spread among the ensemble members for temperature. There is a hint of a slightly 
larger variance between members in locations near the coastline. This is to be 
expected since any variation in the land–sea breeze circulation may explain these 
differences. The range in surface temperature between ensemble members is also 
larger in the San Diego area, as evidenced by the increased light blues and the green, 
yellow, and red areas located in and to the north of the city. These colors correspond 
to 1.6 to 2.2 K. There is no clear relationship between the ensemble range and 
elevation over the inner (D3, 1-km) model domain.  
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Fig. 32 Ensemble range, surface (2m AGL) temperature (Kelvin) over the innermost model 
domain (D3, 1km grid) at 0000 UTC 10 February 2012 

The ensemble standard deviation is shown in Fig. 33. The standard deviation of 
temperature is small, less than 0.2 K over nearly the entire domain, which is 
consistent with the very small spread among the 7 model members evident from 
prior analyses. For the most part, the standard deviation of the surface temperature 
runs from 0.1 to 0.2 K. The smallest standard deviations over land occur northeast 
of Point Loma and the San Diego Bay, which lies immediately to the south of the 
peninsula, directly north of San Diego, toward the northern edge of the domain and 
over higher terrain in the northeast quadrant of the model domain. There is no 
distinct pattern in the standard deviation, as the smallest spread in the members 
occurs largely over water as would be expected in a marine environment. The 
higher elevations to the north also show a reduced spread in the model-predicted 
temperature. However, there is no clear relationship between standard deviation 
and terrain elevation, in general, over the model domain. The largest standard 
deviations are observed over land, as one would expect, with the largest standard 
deviation being only about 0.2 K, which defines the uppermost limit in the figure 
legend. The coastline is readily observable as a sharp difference in the standard 
deviation. There is little spread in the ensemble members. 
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Fig. 33 Ensemble standard deviation of surface (2m AGL) temperature (Kelvin) over the 
innermost model domain (D3, 1-km grid) at 0000 UTC 10 February 2012 

The ensemble mean plus and minus 1 standard deviation (σ) values for the 
innermost domain for 0000 UTC 10 February are shown in Figs. 34 and 35, 
respectively. The ensemble surface temperature mean plus 1 σ surface temperature 
ranges from approximately 284 to 298 K. The ensemble mean surface temperature 
minus 1 σ varies from 280 to 298 K over the model domain. These plots are useful 
in defining the central lobe of the spatial distribution of temperature entire model 
domain, encompassing roughly 68% of the variation, the range over which most of 
the ensemble variance extends over the innermost (D3) model domain, and 
explaining the horizontal distribution of this measure. The most likely solution 
normally lies in between these 2 estimates of temperature. There are no remarkable 
features in either plot, and the distribution closely mimics that of the ensemble 
mean surface temperature, the ensemble mean maximum, and ensemble mean 
minimum plots shown earlier (Figs. 29–32).  
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Fig. 34 Ensemble plus 1 σ of surface (2m) temperature (Kelvin) over the innermost model 
domain (D3, 1-km grid) at 0000 UTC 10 February 2012 

 

Fig. 35 Ensemble minus 1 standard deviation of surface (2m AGL) temperature (Kelvin) 
over the innermost model domain (D3, 1-km grid) at 0000 UTC 10 February 2012 
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Basically the mean plus and minus 1 σ plots should describe about 68% of your 
data if the data are Gaussian. Essentially, this information is useful since it would 
give you the main lobe of the data. The utility of these plots might be constrained 
for the domain as a whole because of potential multimodal distributions and other 
model variables like WIND, UGRD, and VGRD. Nevertheless, the plots show the 
extent of the main lobe of where the ensemble spread is located. 

Smith et al. (2015) looked more closely at the distribution of the temperature error 
and its contribution to the model performance versus a number of explanatory 
terrain variables, and conclude that elevation is the most important. It is intuitive 
that the temperature distribution over the domain will be strongly related to the 
elevation, and our results support this. Smith et al. could not formulate a conclusion 
as to the diurnal pattern in how elevation relates to temperature. Even over this 
small inner domain, there is large variation in the elevation and of land surface type.  

While the Smith et al. (2015) study provides a way ahead to investigate subdomain 
processes, atmospheric response, and model performance, that research has not 
extended past the initial study. Furthermore, we have not performed a complete 
analysis on the subdomain temperature distribution because we lack the appropriate 
GIS tools. The standard postprocessing software included in the WRF Modeling 
System and the MET package we used in this study generally processes model 
statistics only over an entire domain. While it is possible to perform a detailed 
analysis at the subdomain level, we are constrained to using polygons, for example, 
a nested grid, to downselect our data, which makes selection of subregions far less 
precise and limited when using specific selection criteria. The use of GIS tools 
makes selection based on land use, terrain, elevation or any other selection criteria 
much easier. 

5.4 PBL Depth 

Another useful meteorological quantity aside from surface values of temperature, 
moisture, and wind is the PBL depth, which is useful for some meteorological 
sensors and weapons systems since this measure gives an indication as to where 
enhanced turbulence due to convective mixing is expected, and how deep mixing 
would be expected to dilute materials released into the atmosphere. Optical systems 
are also highly affected by atmospheric turbulence, including mixing and the 
formation of BL clouds. Turbulence also affects radio propagation and the 
performance and safety of unmanned aerial vehicles, so knowledge of the PBL 
depth defines the layer where degraded performance may be expected. Our dataset, 
unfortunately, has very few data on which to validate our model PBL depth 
forecasts. Only one routine upper air observation station, at Miramar Marine Corps 
Air Station (KNKX), is located within the inner (D3) domain (Fig. 36).  
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Fig. 36 Atmospheric soundings at KNKX, San Diego (top) 0000 UTC 10 February 2012 and 
(bottom) 1200 UTC 10 February 2012 (Courtesy of the University of Wyoming: 
http://weather.uwyo.edu/upperair/sounding.html.)  

The sounding for 1200 UTC 9 February (0400 PST) at the beginning of the 
simulations is not shown, as it was incomplete. However, the temperature profile 
shows a strong ground-based inversion that extends to approximately 980 mb. A 
slightly less than adiabatic temperature profile then extends to approximately  
750 hPa with light easterly winds through the layer. The next sounding at  
0000 UTC 10 February (1600 UTC), shown in the top image of Fig. 36, represents 
late afternoon conditions, showing a thin superadiabatic layer from the surface to 
about 980 mb. From the surface to the base of the capping inversion at 800 mb, winds 
are light, between 2.5 and 5.0 kt. The last sounding at 1200 UTC 10 February (0400 
PST) shows the strong surface inversion associated with the nocturnal BL, extending 
to 950 mb, with light (~2.5 kt) winds up to approximately 750 mb.  
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The diurnal variation in modeled PBL depth at a point near the center of the inner 
grid (32.9° latitude, 117.1° longitude) is shown in Fig. 37. The time runs from left 
to right and begins at 1200 UTC 9 February and extends to 1200 UTC 10 February. 
Aside from the initial bump around 1300 UTC, the nocturnal PBL is present until 
growth of a daytime CBL begins around 1500 UTC. The BL growth depicted by 
the model is nearly linear and reaches a maximum depth at around 2100 UTC  
(1400 PST local time). The CBL then generally erodes, again, almost linearly until 
about 0600 UTC 10 February. After that point a very shallow nocturnal PBL is 
evident until the end of the simuation.  

 
Fig. 37 Temporal evolution of PBL depth for the 7 PBL schemes tested over the center point 
of innermost (D3, 1-km) domain 

Qualitatively, this behavior is consistent with what is expected in the evolution of 
the PBL over land. However, it is not possible to follow the growth and decay with 
the available upper air observational data, largely because we have only one 
available site to use in the analysis and only point measurements (soundings) at 
regularly scheduled times (i.e., 0000 UTC and 1200 UTC at KNKX). However, the 
general behavior is captured by the model.  

When comparing PBL depths forecast by different BL schemes it is important to 
be aware that the methods used to diagnose the PBL depth vary among the schemes. 
Thus, it is possible for 2 schemes to forecast the same temperature and moisture 
profiles and yet diagnose a different PBL depth. Differences in PBL depth among 
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experiments are then a combination of differences in the forecast structure of the 
atmosphere and differences in the methods used to diagnose the PBL depth. Two 
general methods are used to estimate the depth of the PBL: one based on the 
Richardson number and the other based on the vertical profile of temperature. The 
thresholds for detection vary among the individual schemes. Reen et al. (2014b) 
explored this issue in more detail. 

We did perform a limited qualitative analysis of the variation in the PBL depth by 
the model over the innermost (D3) domain (Figs. 38–43). Each figure shows the 
D3 PBL depth at 0000 UTC (1600 PST) 10 February 2012 for one of the 7 
experiments and includes contours of the terrain height (in meters).  

Figure 38 shows the horizontal variation of the PBL over the innermost model 
domain at 0000 UTC 10 February for the MYNN PBL scheme. As expected, the 
lowest PBL depths are found over the cool waters since the daytime surface 
temperature increase is greater over the land than over the water. Where surface 
temperature is the highest, we find the deepest PBLs. Areas removed from the coast 
show greater PBL depths. The enhanced surface mixing caused by disturbed air 
flow over the higher terrain also results in greater PBL depths. What we can tell 
from these data is that the model appears to be reasonably reproducing the basic 
physics that controls the depth of the PBL. That is, the surface heating and mixing 
combine to contribute to greater PBL depths with the expected geographical 
distribution. The maximum depths presented by the model data are in the vicinity 
of 1.0 to 1.2 km, which is more or less typical of the surface heating expected during 
the wintertime over Southern California. Near the coastlines, and over water, the 
PBL depths are from a few tens of meters to a couple hundred meters. These values 
are again consistent with the formation of a stable marine BL, which is expected 
over the cold waters of the eastern Pacific (Angevine 2006). The small-scale 
structure evident over the eastern half of the domain reflects the effects of the higher 
terrain in generating mixing from the surface to drive the PBL and the enhanced 
entrainment of air from above the capping inversion in these situations.  



 

Approved for public release; distribution is unlimited 
68 

 

Fig. 38 PBL depth (meters) valid at 0000 UTC 10 February 2012 for the MYNN PBL option 

The results from the SH scheme are shown in Fig. 39. The primary difference 
between the MYNN and SH schemes is that SH appears to produce slightly 
shallower daytime CBL depths. There also appears to be less small-scale variation 
using this scheme than was found with MYNN, and some of the terrain effects 
appear to be smoothed out over the eastern portion of the model domain. Slightly 
more fine-scale structure appears when using the MYJ PBL scheme  
(Fig. 40). Particularly toward the southeastern portion of the model domain, greater 
PBL depths are found. However, over the majority of the model domain, the PBL 
depths are consistent with those of SH. The YSU scheme PBL depth (Fig. 41) looks 
very similar to that of SH, which is expected since the SH scheme is built upon the 
YSU scheme with some small differences. Comparison of Fig. 39 with Fig. 41 
shows some of the similarities. There is very little difference in the horizontal 
variation of the PBL depth in these scenarios. The MYJ scheme (Fig. 40) shows 
finer-detailed structure in the southeastern corner of the domain than the other 
schemes. The BouLac-derived PBL depth (Fig. 42) appears similar to the MYNN 
case. The horizontal distribution over the model domain and the minimum and 
maximum values are close to identical for the BouLac and MYNN schemes.  
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Fig. 39 PBL depth (meters) valid at 0000 UTC 10 February 2012 for the SH PBL option 

 

 

Fig. 40 PBL depth (meters) valid at 0000 UTC 10 February 2012 for the MYJ PBL option 
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Fig. 41 PBL depth (meters) valid at 0000 UTC 10 February 2012 for the YSU PBL option 

 

 

Fig. 42 PBL depth (meters) valid at 0000 UTC 10 February 2012 for the BouLac PBL option 
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In contrast with the MYJ, MYNN, SH, and YSU schemes, the QNSE scheme 
produces significantly greater PBL depths, particularly over the southeastern region 
of the grid where there is higher terrain. While the first 4 schemes produce 
maximum PBL depths of 1 to 1.2 km, QNSE (Fig. 43) produced PBL depths close 
to, and in limited areas exceeding, 1.8 km, which is at least 50% deeper than the 
others. Without observational data, it is not possible to say which is correct, but we 
do note a large increase in the PBL depth when using this scheme. Again, over 
higher terrain of the southeast, and in the northeast quadrant of the model domain, 
we find a notably deeper PBL generated using the QNSE PBL scheme. Deeper 
PBLs are also found within the remainder of the domain in general. So we can 
conclude that overall QNSE produced deeper CBLs over land at this time.  

 

Fig. 43 PBL depth (meters) valid at 0000 UTC 10 February 2012 for the QNSE PBL option 

 
Our final scheme tested was ACM2, and the 0000 UTC PBL depth for that case is 
shown in Fig. 44. The ACM2 scheme gives deeper convective PBLs than the first 
5 schemes but not as deep as the QNSE scheme produced. While ACM2 produces 
a maximum PBL depth of around 1.8 km, the areal coverage of these deeper PBLs 
is much more limited than those obtained with QNSE. The deep PBL is confined 
to the extreme southern part of the domain, over higher terrain. 
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Fig. 44 PBL depth (meters) valid at 0000 UTC 10 February 2012 for the ACM2 PBL option 

Our findings suggest that there is a great deal of variation in the PBL depth, and 
thus likely a similar level of variation in the level of the capping inversion, produced 
by each of the 7 schemes we analyzed. Unfortunately, we have very few validation 
data. To adequately test these schemes and arrive at definitive answers as to which 
scheme is superior, we need data from an intensive observational program that 
includes such tools as Lidar to examine the temporal and spatial variability and 
validate our model results. However, it is useful to know that such variability exists 
among the schemes and use this knowledge to effectively choose one particular 
scheme over another in decision making and battlefield forward-deployed 
applications, where detailed and accurate measures of PBL depth are needed.  

5.5 Computation Time 

The effective choice of an optimal PBL scheme to use in a forward-deployed 
environment with constrained computational resources and the need for rapid 
creation of a forecast is partly dependent on the computational cost of the scheme 
being considered. We compared the times required to complete the same triple nest 
configuration for each of the schemes. On the standalone Linux workstation we 
used to obtain these timings, the environment was constant during the time of 
integration, and no other large computational loads were being run. We ran the 
modeling system on a RHEL 6.9 system, a dual-core Xeon 5650 processor, and 32 
GB of RAM. The results for a 24-h simulation using an 18-s time step are shown 
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in Fig. 45. The MYNN, SH, MYJ, BouLac, and ACM2 PBL options all ran with a 
wall time of about 25 h.  

 

Fig. 45 Execution time (hours) for a 24-h simulation using the triple nest configuration and 
each of the 7 tested PBL/SL scheme combinations 

The QNSE scheme took notably longer to run at approximately 35 h wall time. This 
could be a consideration when a strict timeline must be maintained in a forward 
deployment environment.  

While these times are clearly not practical to be of use in nowcasting, there are a 
number of controllable factors that can reduce the time and make nowcasting 
practical. We performed experiments using an 18-s time step. Since this is quite 
conservative, if we employ the standard rule of thumb for stability, we chose a time 
step greater than or less than 6*dx, where dx is the horizontal grid spacing that was 
used (the finer grids are automatically scaled down by a factor equal to the ratio of 
the grid spacing). We varied the time step and performed benchmarks, finally 
testing a 54-s time step, and the model executed in approximately 10 h. We did not 
evaluate the use of an adaptive time step, and that could potentially further speed 
up the model execution.  

5.6 Analysis Summary 

In this research we have analyzed the performance of 7 commonly employed WRF 
PBL schemes for potential use in an optimal configuration of a field-deployed 
application of the WRF model known as WRE-N. Analysis of these schemes 
showed that there is no clearly superior scheme for the meteorological variables we 
considered. It also showed that the best scheme is a function of meteorological 
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variable, time of day, and, potentially, the geographic subdomain we are interested 
in. No single scheme performed best in all applications. As a measure of model 
performance, we looked most closely at the model bias and RMSE for each of the 
schemes. Each of the BL schemes performed fairly similarly, with few exceptions. 

Our analysis was based on a single model domain on only 1 day. However, we were 
able to capture the development of both the daytime CBL and the nocturnal BL as 
well as the transition between both. We also looked briefly at PBL depth to 
highlight the differences between the schemes. For the 0- to 6-h forecast period 
(data assimilation) during the transition between the nocturnal BL and the initial 
development of the daytime CBL, the BouLac scheme performed best. For the  
6- to 12-h part of the simulation (nowcast), which is associated with the 
development of the daytime CBL, the BouLac scheme performed best. The YSU 
and QNSE schemes were the best performers for the extended forecast period  
(12–24 h) covering nighttime over the model domain. Overall, the BouLac scheme 
was the best performer for the forecast period.  

Since we are primarily interested in nowcast applications, and since the BouLac 
scheme performed among the best at all times and during nighttime and daytime, 
we can conclude that BouLac is the preferred PBL scheme. However, this 
conclusion comes from a single-time configuration over 1 case day over a small 
region, and we only evaluated model performance based on surface data. More-
extensive testing using vertical profile observations, and many more cases would 
be needed to definitively conclude that BouLac is preferred overall. The separation 
between ensemble members was small, which is reflected in the Talagrand 
diagrams and the standard deviation of the ensemble. We cannot confidently 
separate the influence of time of day from time since model initialization.  

Since PBL depth is also a meteorological variable of considerable interest and value 
for our application, our choice would be taken with the caveat that it is pending a 
closer analysis of the PBL depth. Although we looked briefly at PBL depth, we 
need to acquire a more detailed high-temporal-resolution observational dataset such 
as the planned Meteorological Sensor Array (MSA) (Knapp et al. 2018). One or 
more movable measurement systems such as Lidar, or supplemental soundings, 
would be highly beneficial and provide observational data regarding the diurnal 
variation in the PBL depth. Such data are highly needed and invaluable in PBL 
model verification studies beyond using surface data.  
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6. Summary and Conclusions 

In this series of experiments, 7 PBL/SL combinations were tested and evaluated for 
performance using a 9-/3-/1-km triple nest grid configuration centered over San 
Diego, California, under quiescent conditions in late winter. The particular domain 
was chosen in order to include complex and varying topography and leverage the 
availability of high-density surface meteorological observations, which were 
assimilated into the initial conditions of the model, and for detailed verification 
analysis. Our study was largely limited to surface parameters of temperature, dew 
point, and wind speed and to one day of intensive surface observations over a single 
model domain. The day was chosen to allow examination of the diurnal cycle of 
the BL in the absence of strong synoptic forcing and rapidly changing weather 
conditions.  

For the 7 BL/SL scheme combinations we tested, we evaluated the model bias and 
RMSE over the innermost (1-km) model domain. For the first 6 h of the forecast 
period (nowcast), the mean temperature bias was –1.66 K with a standard deviation 
among the schemes of approximately 0.2 K. For the following 12-h extended 
forecast the mean/standard deviation of the bias was 0.17/0.76 K, and for the 
complete forecast period it was –0.44/0.55 K. For dew point, the mean/standard 
deviation of bias for the 3 periods were, respectively, –1.12/0.45, –1.06/0.19, and 
–1.10/0.15 K. For wind speed, the respective bias statistics were 0.07/0.49, 
0.43/0.27, and 0.31/0.34 ms–1. The smallest temperature bias for the nowcast, 
extended forecast, and complete forecast periods was produced by the MYJ, YSU, 
and MYJ schemes, respectively. For DPT it was YSU, BouLac, and BouLac. For 
wind, the best performers were MYNN, SH, and BouLac, respectively. In general, 
the spread among the tested schemes was not large; in the case of temperature and 
DPT, it was well under 1 K. Wind speed mean and standard deviation of bias were 
typically less than 0.5 ms–1 in light winds over the model domain.  

To analyze relative performance of each scheme, we chose to focus primarily on 
the model RMSE since large deviations in both the positive and negative directions 
can offset each other in the bias statistic. The mean RMSE for surface temperature, 
and the corresponding standard deviation for the nowcast, extended forecast, and 
complete forecast periods, are 2.43/0.18, 2.95/0.15, and 2.77/0.13 K, respectively. 
Thus, the RMSE increases with simulation time as would be expected. For DPT, 
these values are respectively 3.38/0.09, 2.77/0.07, and 2.97/0.07 K. For wind, the 
mean RMSE/standard deviation pairs are 1.49/0.12, 1.47/0.16, and 1.47/–0.14 ms-

1. For temperature, DPT, and wind, the standard deviation, or spread, in the schemes 
is small. From the RMSE values derived from each scheme, a ranking was 
developed ranging from 1 (best) to 7 (worst) and a composite developed based on 
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the 3 independent meteorological parameters. For the nowcast period, the best 
overall performer was BouLac, followed by MYJ. For the extended forecast period, 
the YSU, BouLac, and QNSE schemes were tied for best performance. For the 
overall forecast period (nowcast, extended) BouLac was best, followed by QNSE. 
The standard deviation of the ensemble created using the various PBL schemes was 
small despite the fact that the schemes we tested were devised using local, nonlocal, 
and hybrid approaches. For our case and grid spacing, this did not seem to make an 
appreciable difference in the quality of performance. While the SH scheme was 
developed primarily to address the scale awareness problem, we did not see a 
significant improvement in using this scheme compared with the others we tested, 
and in particular the YSU scheme, which shares common lineage. Independent 
statistical analysis by Smith et al. (2018) is in agreement with our determination of 
the lack of variance between the schemes, and attributes only 3%–4% of total model 
variance to the PBL schemes. That calculation involves, at the highest level, an 
extension of a common data analytics approach called ANOVA (for analysis of 
variance), which uses a parameter eta (η). Bakeman (2005) found that a generalized 
eta squared, ηG, was superior. Eta squared (ηG

2) was calculated using the lsr 
package in R (Navarro 2015), allowing us to estimate the relative contribution to 
model error (uncertainty) due to the BL physics packages. 

Most interestingly, the variation in performance between the schemes is greater 
during the nighttime, suggesting that the largest differences between the 
formulation of the schemes is within the nighttime stable BL physics. We see this 
in the winds, temperature, and moisture analyses that we performed. The difference 
in performance of these schemes during the daytime (convective BL) is much 
smaller regardless of the details of the closure methodology. Further analysis 
should also consider examining the performance of the various BL schemes for the 
other 4 days, where synoptic forcing was stronger and more variable.  

Curiously, the model statistics were not better with the use of the finer innermost 
(1-km) grid. For the grid points residing within the 1-km innermost nest, the 3-km 
data were slightly better for the single time analyzed but not significantly different. 
There may be a number of reasons for this apparent discrepancy. Decreasing grid 
spacing in mesoscale models to less than 10–15 km generally improves the realism 
of the results but does not necessarily significantly improve the objectively scored 
accuracy of the forecasts (Mass et al. 2002). That study further showed that position 
errors, timing errors, and observational data density can all contribute to these 
errors, and that additional approaches should be added to the current traditional 
verification tools. Ebert (2008) addressed this issue and attributed it to the 
shortcomings of using a grid-to-point verification technique, which often resulted 
in the conclusion that lower-resolution models scored higher in terms of continuous 
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error statistics than higher-resolution models despite the more realistic 
representation of atmospheric features provided by the latter. Errors could be 
caused in part by the geolocation errors documented with the WRF model; 
however, we have no confirmation that the spherical earth assumption has a notable 
effect on these simulations. Dyer et al. (2016) found, in a similar study over the 
same model domain, that grid spacing influences the magnitude of uncertainty 
within an ensemble, and that the magnitude and type of relationship varies by case. 

Talagrand diagrams constructed for several hours of the simulation showed very 
little dispersion between the 7 members considered here relative to the spread 
present in the observations. Because we did not obtain an optimal flat response in 
our Talagrand plots, but rather a classic “U shaped” distribution characteristic of 
inadequate spread between the ensemble members for all but temperature, the use 
of only a physics-based ensemble (in this case BL/SL combinations) is, in itself, 
not adequate for constructing a useful ensemble to derive probabilistic information 
about forecast uncertainty. The Talagrand diagrams for the moisture, wind, and 
temperature state variables all demonstrated adequate spread to constitute a valid 
ensemble using only the PBL schemes as a basis for a physics-based ensemble. 
Therefore, it is necessary to consider more than simply the BL/SL combinations to 
construct an adequate ensemble from which to represent model physics uncertainty. 
Research looking into the relative contributions to model uncertainty due to the 
other physics schemes and initialization data is addressed in the DoE approach 
described by Smith et al. (2018). 

The primary goal of this study was to examine the performance of a large number 
of PBL/SL combinations and potentially find the best available single 
preconfigured configuration that can be used in most environments and geographic 
regions. Although we have deliberately chosen a diverse model domain for our 
study, the present study does not allow the latter goal to be addressed. While we 
conclude that most schemes performed nearly equally well on this domain, it would 
be advantageous to leverage the ability to analyze subdomains using GIS tools to 
determine in which geographic subregion a particular scheme functions best. One 
possible way to address this in a field-deployable system would be to utilize a 
geographic database that categorizes regions. The end user would just then need to 
input the coordinates of the center point, and the system software would 
preconfigure the run using that information and the static databases such as 
topography and land use. Minimal user input would be required in such a scheme. 

 

  



 

Approved for public release; distribution is unlimited 
78 

7. Further Considerations 

This research explored the options presented within the WRF-ARW framework for 
representing PBL and SL processes and characterizing the structure of the 
atmosphere to produce quality deterministic forecasts within the framework of a 
nowcast version of the modeling system. While we have not identified a single 
preferred scheme for a universal configuration of the model that can be used in a 
variety of geographic regimes and topography, a number of other determinants has 
surfaced. The computational requirements of each candidate scheme differ. The 
most complex scheme (i.e., QNSE) requires significantly more resources to run 
than the simpler schemes (i.e., MYNN and YSU). This translates to longer model 
execution time, which impacts the practicality of using the scheme where forecast 
production must occur as rapidly as possible. Except at nighttime, the 7 schemes 
tested here did not show much variation in the measures of model performance 
(bias and RMSE), particularly during the daytime, so it could be argued that we 
should simply use the most computationally efficient code. Therefore, when 
designing a specific system, one might be willing to sacrifice accuracy for speed 
but that it depends on the specific requirements of the system. 

The WRE-N modeling system is designed to produce a nowcast, or 0- to 3-h and 
perhaps 0- to 6-h forecast for use in a forward-deployed environment. The model 
output and the output from postprocessing for specific needs, like weather-impact 
decision aids (WIDAs), must be available to the end user rapidly enough to be 
useful for the decision maker and for operations. With the configuration run in these 
experiments, it does not appear that WRE-N would produce a timely forecast on 
forward-deployed hardware unless that hardware was a computer cluster. Internal 
testing shows execution times, as expected, are a function of the number of 
processors utilized. With a 12-core Xeon system (local dedicated Xeon dual-
processor workstations), a 24-h run takes approximately 24 h using an 18-s time 
step. Execution time reduced to approximately 10 h with the suggested time step of 
54 s for this configuration. Clearly, improvements in execution time are necessary 
for this to be a completely viable solution, but at present, without changes, the 
modeling system in its present form can be useful in providing nowcast support in 
the battlefield.  

However, there are ways in which we can make the modeling system run more 
efficiently. First, the default time step used in this study was rather conservative. 
Conventional wisdom within the WRF-ARW modeling community is to use a time 
step dt = 6*dx via the parameter time_step where parent_time_step_ratio sets the 
ratio between the time step of a given nest and its parent nest. This would imply  
dt = 54 s for a 9-km outer mesh. Runs completed here used an 18-s time step (again 
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scaled for inner nests). The 18-s time step was likely chosen to avoid computational 
instability due to the complex topography of our domain and the interaction with 
the boundaries of our selected meshes. To test this hypothesis, an additional run 
was made using a 45-s time step. With fewer iterations, the model should run faster 
by the factor 45/18. WRF completed a 24-h simulation in 12 h and 15 min using a 
45-s time step vice 29 h and 30 m using the default 18-s time step. The same 
simulation and configuration took 10 h and 15 min using a 54-s time step. An 
adaptive time step can be applied (Hutchinson 2007), but we have not yet applied 
this technique to this case. Second, we can speed up model execution by running 
on hardware configured with a solid-state drive (SSD), but if we use RAID disks 
this may or may not result in speedups. The SSD would minimize input–output 
(I/O) time writing to and reading from disk. Benchmarks were not run because the 
SSD drive configuration was not available at this writing. Third, the triple nest grid 
used in these experiments is larger than needed for typical artillery meteorology 
applications. Restricting the domain, particularly the outer 2 meshes, would result 
in further savings, as these tests were performed using a conservative grid nesting 
strategy to minimize the possibility of artificial features (those arising from 
boundary conditions) advecting inward from the outer domains. Initial testing with 
a 13.5-/4.5-/1.5-km domain with approximately 100 × 100 grid cells on each 
domain was able to integrate ahead 1 h in a little over 5 min on a dual CPU (8 core 
per CPU) desktop.  

The model core itself is only one part of several pieces that have to successfully 
execute within given time constraints for WRE-N to be viable. Mississippi State 
University researchers (Dyer et al. 2015) developed a complete modeling system 
(ingest through postprocessing) that integrates the modeling system. Built to run on 
a virtual machine, the model was run on several domains including the southern 
California domain used here. Although the system produced a valid forecast in less 
than 1 h, the grid size used was far too coarse—the finest being 9 km—to address 
the projected needs of the US Army. 

Kirby et al. (2013) describe a process by which ARL’s Battlefield Environment 
Division (BED) engineered a Web service that automates the entire process, from 
initialization data acquisition to execution of the WRF postprocessing system 
(WPS) via an earlier version of the RUNWPSPLUS software used in the current 
study (which is driven by a Perl script) to observation retrieval and quality control, 
and, finally, generation of high-resolution WRF grids utilizing FDDA. The  
WRE-N Real Time system (WREN_RT) is the latest ongoing effort to integrate the 
modeling process into a single framework. Part of this package includes 
RUNWPSPLUS, which automates a lot of the data ingest and initialization work 
into a single package that assimilates data, processes the model initialization, and 
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produces a forecast based on preselected model parameters. Postprocessing of the 
output data would have to follow to produce custom-tailored products for the end 
user, and this too can be automated to a large degree.  

Modeling system testing, evaluation, and a proof of concept using real-time data, 
potentially within the framework of the ARL MSA (Knapp et al. 2018), would be 
the next step in delivering this system to the end user. A well-designed program 
would incorporate remote sensing, which would address the need for additional 
model verification and validation data, such as profiles, extending the model 
validation above the surface. Lidar and profilers could be used to document the 
diurnal evolution of the BL, a severely limiting factor in our current study.  

Aside from the clear utility of using meteorological data for decision making and 
planning purposes, WRE-N output can be used as input to WIDAs. One such ARL 
application is MyWIDA (Brandt et al. 2013). Figure 46 shows an example of 
another application, Air Impacts Routing (AIR). In this application, thresholds are 
selected by the user, and a flight path solution based on the impact of specified 
parameters minimizes the environmental risk. To couple the AIR software to the 
WRF output, data conditioning must take the netCDF output and be capable of 
parsing it into the proper format for the calculations. Our initial testing at BED 
suggests this can be accomplished in a few seconds, so the postprocessing is trivial 
in the way of computational resources. WRF and the AIR can both be run in the 
field, an important consideration since transferring WRF output via currently 
available communication links is not practical due to the immense file size of the 
NetCDF output data. Processing only needed data for the intended algorithms can 
also improve performance by minimizing I/O, needless postprocessing, and 
creation of unused meteorological fields. 
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Fig. 46 Sample of WRF-ARW output after assimilation into AIR. Based on user-specified 
thresholds, air routing algorithms provided an optimal flight path to minimize hazards. 
Environmental parameters were provided by WRF-ARW output from this study. (Image 
courtesy of Jeff Johnson, ARL.) 

While WRF embedded into a modeling system such as WRE-N is certainly 
possible, further improvements in model execution can be implemented to decrease 
the time for the components to execute and increase the lead time for end users. 
Clearly, there still remains a need to decrease the model bias and RMSE for the 
model domain. While the model bias can be mitigated by performing 
postprocessing adjustments in the model data, it is preferable to identify the root 
causes of the model bias rather than simply adjust for it. The current PBL/SL 
schemes produce very similar results despite the differences in the physics during 
the development of the daytime CBL and differ significantly with the development 
of a nocturnal BL. It is therefore necessary to take a closer look at the modeling 
system as a whole and examine the interactions between the various physical 
parameterizations in each category. This is the subject of ongoing research that 
incorporates the DoE approach, which was proposed by Smith and Penc (2015a,b, 
2016) and Smith et al. (2017, 2018).  
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